![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sdomne0d | Structured version Visualization version GIF version |
Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.) |
Ref | Expression |
---|---|
sdomne0d.a | ⊢ (𝜑 → 𝐵 ≺ 𝐴) |
sdomne0d.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
sdomne0d | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomne0d.a | . 2 ⊢ (𝜑 → 𝐵 ≺ 𝐴) | |
2 | sdomne0d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | breq1 5144 | . . . . . . 7 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) | |
4 | 3 | biimpd 228 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
6 | 0sdomg 9125 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅)) | |
7 | sdomtr 9136 | . . . . . . 7 ⊢ ((∅ ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → ∅ ≺ 𝐴) | |
8 | 7 | ex 411 | . . . . . 6 ⊢ (∅ ≺ 𝐵 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
9 | 6, 8 | syl6bir 253 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ≠ ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
10 | 5, 9 | pm2.61dne 3018 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
11 | 2, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
12 | relsdom 8967 | . . . . . 6 ⊢ Rel ≺ | |
13 | 12 | brrelex2i 5727 | . . . . 5 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
14 | 0sdomg 9125 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (∅ ≺ 𝐴 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
16 | 15 | ibi 266 | . . 3 ⊢ (∅ ≺ 𝐴 → 𝐴 ≠ ∅) |
17 | 11, 16 | syl6 35 | . 2 ⊢ (𝜑 → (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅)) |
18 | 1, 17 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 Vcvv 3463 ∅c0 4316 class class class wbr 5141 ≺ csdm 8959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 |
This theorem is referenced by: safesnsupfiss 42882 safesnsupfilb 42885 |
Copyright terms: Public domain | W3C validator |