Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdomne0d Structured version   Visualization version   GIF version

Theorem sdomne0d 41760
Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.)
Hypotheses
Ref Expression
sdomne0d.a (𝜑𝐵𝐴)
sdomne0d.b (𝜑𝐵𝑉)
Assertion
Ref Expression
sdomne0d (𝜑𝐴 ≠ ∅)

Proof of Theorem sdomne0d
StepHypRef Expression
1 sdomne0d.a . 2 (𝜑𝐵𝐴)
2 sdomne0d.b . . . 4 (𝜑𝐵𝑉)
3 breq1 5113 . . . . . . 7 (𝐵 = ∅ → (𝐵𝐴 ↔ ∅ ≺ 𝐴))
43biimpd 228 . . . . . 6 (𝐵 = ∅ → (𝐵𝐴 → ∅ ≺ 𝐴))
54a1i 11 . . . . 5 (𝐵𝑉 → (𝐵 = ∅ → (𝐵𝐴 → ∅ ≺ 𝐴)))
6 0sdomg 9055 . . . . . 6 (𝐵𝑉 → (∅ ≺ 𝐵𝐵 ≠ ∅))
7 sdomtr 9066 . . . . . . 7 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
87ex 414 . . . . . 6 (∅ ≺ 𝐵 → (𝐵𝐴 → ∅ ≺ 𝐴))
96, 8syl6bir 254 . . . . 5 (𝐵𝑉 → (𝐵 ≠ ∅ → (𝐵𝐴 → ∅ ≺ 𝐴)))
105, 9pm2.61dne 3032 . . . 4 (𝐵𝑉 → (𝐵𝐴 → ∅ ≺ 𝐴))
112, 10syl 17 . . 3 (𝜑 → (𝐵𝐴 → ∅ ≺ 𝐴))
12 relsdom 8897 . . . . . 6 Rel ≺
1312brrelex2i 5694 . . . . 5 (∅ ≺ 𝐴𝐴 ∈ V)
14 0sdomg 9055 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . 4 (∅ ≺ 𝐴 → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615ibi 267 . . 3 (∅ ≺ 𝐴𝐴 ≠ ∅)
1711, 16syl6 35 . 2 (𝜑 → (𝐵𝐴𝐴 ≠ ∅))
181, 17mpd 15 1 (𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  wne 2944  Vcvv 3448  c0 4287   class class class wbr 5110  csdm 8889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893
This theorem is referenced by:  safesnsupfiss  41761  safesnsupfilb  41764
  Copyright terms: Public domain W3C validator