Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdomne0d Structured version   Visualization version   GIF version

Theorem sdomne0d 42881
Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.)
Hypotheses
Ref Expression
sdomne0d.a (𝜑𝐵𝐴)
sdomne0d.b (𝜑𝐵𝑉)
Assertion
Ref Expression
sdomne0d (𝜑𝐴 ≠ ∅)

Proof of Theorem sdomne0d
StepHypRef Expression
1 sdomne0d.a . 2 (𝜑𝐵𝐴)
2 sdomne0d.b . . . 4 (𝜑𝐵𝑉)
3 breq1 5144 . . . . . . 7 (𝐵 = ∅ → (𝐵𝐴 ↔ ∅ ≺ 𝐴))
43biimpd 228 . . . . . 6 (𝐵 = ∅ → (𝐵𝐴 → ∅ ≺ 𝐴))
54a1i 11 . . . . 5 (𝐵𝑉 → (𝐵 = ∅ → (𝐵𝐴 → ∅ ≺ 𝐴)))
6 0sdomg 9125 . . . . . 6 (𝐵𝑉 → (∅ ≺ 𝐵𝐵 ≠ ∅))
7 sdomtr 9136 . . . . . . 7 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
87ex 411 . . . . . 6 (∅ ≺ 𝐵 → (𝐵𝐴 → ∅ ≺ 𝐴))
96, 8syl6bir 253 . . . . 5 (𝐵𝑉 → (𝐵 ≠ ∅ → (𝐵𝐴 → ∅ ≺ 𝐴)))
105, 9pm2.61dne 3018 . . . 4 (𝐵𝑉 → (𝐵𝐴 → ∅ ≺ 𝐴))
112, 10syl 17 . . 3 (𝜑 → (𝐵𝐴 → ∅ ≺ 𝐴))
12 relsdom 8967 . . . . . 6 Rel ≺
1312brrelex2i 5727 . . . . 5 (∅ ≺ 𝐴𝐴 ∈ V)
14 0sdomg 9125 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . 4 (∅ ≺ 𝐴 → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615ibi 266 . . 3 (∅ ≺ 𝐴𝐴 ≠ ∅)
1711, 16syl6 35 . 2 (𝜑 → (𝐵𝐴𝐴 ≠ ∅))
181, 17mpd 15 1 (𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  c0 4316   class class class wbr 5141  csdm 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963
This theorem is referenced by:  safesnsupfiss  42882  safesnsupfilb  42885
  Copyright terms: Public domain W3C validator