| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdomne0d | Structured version Visualization version GIF version | ||
| Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.) |
| Ref | Expression |
|---|---|
| sdomne0d.a | ⊢ (𝜑 → 𝐵 ≺ 𝐴) |
| sdomne0d.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| sdomne0d | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomne0d.a | . 2 ⊢ (𝜑 → 𝐵 ≺ 𝐴) | |
| 2 | sdomne0d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | breq1 5113 | . . . . . . 7 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) | |
| 4 | 3 | biimpd 229 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
| 6 | 0sdomg 9076 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → (∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 7 | sdomtr 9085 | . . . . . . 7 ⊢ ((∅ ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → ∅ ≺ 𝐴) | |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (∅ ≺ 𝐵 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 9 | 6, 8 | biimtrrdi 254 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ≠ ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
| 10 | 5, 9 | pm2.61dne 3012 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 11 | 2, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 12 | relsdom 8928 | . . . . . 6 ⊢ Rel ≺ | |
| 13 | 12 | brrelex2i 5698 | . . . . 5 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
| 14 | 0sdomg 9076 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (∅ ≺ 𝐴 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 16 | 15 | ibi 267 | . . 3 ⊢ (∅ ≺ 𝐴 → 𝐴 ≠ ∅) |
| 17 | 11, 16 | syl6 35 | . 2 ⊢ (𝜑 → (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅)) |
| 18 | 1, 17 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 class class class wbr 5110 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: safesnsupfiss 43411 safesnsupfilb 43414 |
| Copyright terms: Public domain | W3C validator |