![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxduhgr0nedg | Structured version Visualization version GIF version |
Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
Ref | Expression |
---|---|
vtxdushgrfvedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdushgrfvedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
vtxdushgrfvedg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
vtxduhgr0nedg | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdushgrfvedg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2799 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | vtxdushgrfvedg.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
4 | 1, 2, 3 | vtxd0nedgb 26738 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
5 | 4 | adantl 474 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
6 | vtxdushgrfvedg.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | 6 | eleq2i 2870 | . . . . . . . 8 ⊢ ({𝑈, 𝑣} ∈ 𝐸 ↔ {𝑈, 𝑣} ∈ (Edg‘𝐺)) |
8 | 2 | uhgredgiedgb 26361 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖))) |
9 | 7, 8 | syl5bb 275 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖))) |
10 | 9 | adantr 473 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖))) |
11 | prid1g 4484 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑣}) | |
12 | eleq2 2867 | . . . . . . . . 9 ⊢ ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → (𝑈 ∈ {𝑈, 𝑣} ↔ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) | |
13 | 11, 12 | syl5ibcom 237 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑉 → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
14 | 13 | adantl 474 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
15 | 14 | reximdv 3196 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
16 | 10, 15 | sylbid 232 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ({𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
17 | 16 | rexlimdvw 3215 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
18 | 17 | con3d 150 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸)) |
19 | 5, 18 | sylbid 232 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸)) |
20 | 19 | 3impia 1146 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 {cpr 4370 dom cdm 5312 ‘cfv 6101 0cc0 10224 Vtxcvtx 26231 iEdgciedg 26232 Edgcedg 26282 UHGraphcuhgr 26291 VtxDegcvtxdg 26715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-xnn0 11653 df-z 11667 df-uz 11931 df-xadd 12194 df-fz 12581 df-hash 13371 df-edg 26283 df-uhgr 26293 df-vtxdg 26716 |
This theorem is referenced by: vtxdumgr0nedg 26743 |
Copyright terms: Public domain | W3C validator |