![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxduhgr0nedg | Structured version Visualization version GIF version |
Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
Ref | Expression |
---|---|
vtxdushgrfvedg.v | β’ π = (VtxβπΊ) |
vtxdushgrfvedg.e | β’ πΈ = (EdgβπΊ) |
vtxdushgrfvedg.d | β’ π· = (VtxDegβπΊ) |
Ref | Expression |
---|---|
vtxduhgr0nedg | β’ ((πΊ β UHGraph β§ π β π β§ (π·βπ) = 0) β Β¬ βπ£ β π {π, π£} β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdushgrfvedg.v | . . . . 5 β’ π = (VtxβπΊ) | |
2 | eqid 2725 | . . . . 5 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
3 | vtxdushgrfvedg.d | . . . . 5 β’ π· = (VtxDegβπΊ) | |
4 | 1, 2, 3 | vtxd0nedgb 29341 | . . . 4 β’ (π β π β ((π·βπ) = 0 β Β¬ βπ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ))) |
5 | 4 | adantl 480 | . . 3 β’ ((πΊ β UHGraph β§ π β π) β ((π·βπ) = 0 β Β¬ βπ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ))) |
6 | vtxdushgrfvedg.e | . . . . . . . . 9 β’ πΈ = (EdgβπΊ) | |
7 | 6 | eleq2i 2817 | . . . . . . . 8 β’ ({π, π£} β πΈ β {π, π£} β (EdgβπΊ)) |
8 | 2 | uhgredgiedgb 28978 | . . . . . . . 8 β’ (πΊ β UHGraph β ({π, π£} β (EdgβπΊ) β βπ β dom (iEdgβπΊ){π, π£} = ((iEdgβπΊ)βπ))) |
9 | 7, 8 | bitrid 282 | . . . . . . 7 β’ (πΊ β UHGraph β ({π, π£} β πΈ β βπ β dom (iEdgβπΊ){π, π£} = ((iEdgβπΊ)βπ))) |
10 | 9 | adantr 479 | . . . . . 6 β’ ((πΊ β UHGraph β§ π β π) β ({π, π£} β πΈ β βπ β dom (iEdgβπΊ){π, π£} = ((iEdgβπΊ)βπ))) |
11 | prid1g 4761 | . . . . . . . . 9 β’ (π β π β π β {π, π£}) | |
12 | eleq2 2814 | . . . . . . . . 9 β’ ({π, π£} = ((iEdgβπΊ)βπ) β (π β {π, π£} β π β ((iEdgβπΊ)βπ))) | |
13 | 11, 12 | syl5ibcom 244 | . . . . . . . 8 β’ (π β π β ({π, π£} = ((iEdgβπΊ)βπ) β π β ((iEdgβπΊ)βπ))) |
14 | 13 | adantl 480 | . . . . . . 7 β’ ((πΊ β UHGraph β§ π β π) β ({π, π£} = ((iEdgβπΊ)βπ) β π β ((iEdgβπΊ)βπ))) |
15 | 14 | reximdv 3160 | . . . . . 6 β’ ((πΊ β UHGraph β§ π β π) β (βπ β dom (iEdgβπΊ){π, π£} = ((iEdgβπΊ)βπ) β βπ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ))) |
16 | 10, 15 | sylbid 239 | . . . . 5 β’ ((πΊ β UHGraph β§ π β π) β ({π, π£} β πΈ β βπ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ))) |
17 | 16 | rexlimdvw 3150 | . . . 4 β’ ((πΊ β UHGraph β§ π β π) β (βπ£ β π {π, π£} β πΈ β βπ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ))) |
18 | 17 | con3d 152 | . . 3 β’ ((πΊ β UHGraph β§ π β π) β (Β¬ βπ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ) β Β¬ βπ£ β π {π, π£} β πΈ)) |
19 | 5, 18 | sylbid 239 | . 2 β’ ((πΊ β UHGraph β§ π β π) β ((π·βπ) = 0 β Β¬ βπ£ β π {π, π£} β πΈ)) |
20 | 19 | 3impia 1114 | 1 β’ ((πΊ β UHGraph β§ π β π β§ (π·βπ) = 0) β Β¬ βπ£ β π {π, π£} β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βwrex 3060 {cpr 4627 dom cdm 5673 βcfv 6543 0cc0 11133 Vtxcvtx 28848 iEdgciedg 28849 Edgcedg 28899 UHGraphcuhgr 28908 VtxDegcvtxdg 29318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-xadd 13120 df-fz 13512 df-hash 14317 df-edg 28900 df-uhgr 28910 df-vtxdg 29319 |
This theorem is referenced by: vtxdumgr0nedg 29346 |
Copyright terms: Public domain | W3C validator |