MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxduhgr0nedg Structured version   Visualization version   GIF version

Theorem vtxduhgr0nedg 27840
Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxduhgr0nedg ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
Distinct variable groups:   𝑣,𝐺   𝑣,𝑈   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐸(𝑣)

Proof of Theorem vtxduhgr0nedg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eqid 2739 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
3 vtxdushgrfvedg.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
41, 2, 3vtxd0nedgb 27836 . . . 4 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
54adantl 481 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
6 vtxdushgrfvedg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
76eleq2i 2831 . . . . . . . 8 ({𝑈, 𝑣} ∈ 𝐸 ↔ {𝑈, 𝑣} ∈ (Edg‘𝐺))
82uhgredgiedgb 27477 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
97, 8syl5bb 282 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
109adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
11 prid1g 4701 . . . . . . . . 9 (𝑈𝑉𝑈 ∈ {𝑈, 𝑣})
12 eleq2 2828 . . . . . . . . 9 ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → (𝑈 ∈ {𝑈, 𝑣} ↔ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1311, 12syl5ibcom 244 . . . . . . . 8 (𝑈𝑉 → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1413adantl 481 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1514reximdv 3203 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1610, 15sylbid 239 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1716rexlimdvw 3220 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1817con3d 152 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
195, 18sylbid 239 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
20193impia 1115 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wrex 3066  {cpr 4568  dom cdm 5588  cfv 6430  0cc0 10855  Vtxcvtx 27347  iEdgciedg 27348  Edgcedg 27398  UHGraphcuhgr 27407  VtxDegcvtxdg 27813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-xadd 12831  df-fz 13222  df-hash 14026  df-edg 27399  df-uhgr 27409  df-vtxdg 27814
This theorem is referenced by:  vtxdumgr0nedg  27841
  Copyright terms: Public domain W3C validator