| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxduhgr0nedg | Structured version Visualization version GIF version | ||
| Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| vtxdushgrfvedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdushgrfvedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| vtxdushgrfvedg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| vtxduhgr0nedg | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | vtxdushgrfvedg.d | . . . . 5 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | vtxd0nedgb 29473 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 6 | vtxdushgrfvedg.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
| 7 | 6 | eleq2i 2827 | . . . . . . . 8 ⊢ ({𝑈, 𝑣} ∈ 𝐸 ↔ {𝑈, 𝑣} ∈ (Edg‘𝐺)) |
| 8 | 2 | uhgredgiedgb 29110 | . . . . . . . 8 ⊢ (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖))) |
| 9 | 7, 8 | bitrid 283 | . . . . . . 7 ⊢ (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖))) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖))) |
| 11 | prid1g 4741 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑣}) | |
| 12 | eleq2 2824 | . . . . . . . . 9 ⊢ ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → (𝑈 ∈ {𝑈, 𝑣} ↔ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) | |
| 13 | 11, 12 | syl5ibcom 245 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑉 → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 15 | 14 | reximdv 3156 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 16 | 10, 15 | sylbid 240 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ({𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 17 | 16 | rexlimdvw 3147 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖))) |
| 18 | 17 | con3d 152 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → (¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸)) |
| 19 | 5, 18 | sylbid 240 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸)) |
| 20 | 19 | 3impia 1117 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ (𝐷‘𝑈) = 0) → ¬ ∃𝑣 ∈ 𝑉 {𝑈, 𝑣} ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {cpr 4608 dom cdm 5659 ‘cfv 6536 0cc0 11134 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 UHGraphcuhgr 29040 VtxDegcvtxdg 29450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-xadd 13134 df-fz 13530 df-hash 14354 df-edg 29032 df-uhgr 29042 df-vtxdg 29451 |
| This theorem is referenced by: vtxdumgr0nedg 29478 |
| Copyright terms: Public domain | W3C validator |