MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxduhgr0nedg Structured version   Visualization version   GIF version

Theorem vtxduhgr0nedg 27276
Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxduhgr0nedg ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
Distinct variable groups:   𝑣,𝐺   𝑣,𝑈   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐸(𝑣)

Proof of Theorem vtxduhgr0nedg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eqid 2823 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
3 vtxdushgrfvedg.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
41, 2, 3vtxd0nedgb 27272 . . . 4 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
54adantl 484 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
6 vtxdushgrfvedg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
76eleq2i 2906 . . . . . . . 8 ({𝑈, 𝑣} ∈ 𝐸 ↔ {𝑈, 𝑣} ∈ (Edg‘𝐺))
82uhgredgiedgb 26913 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
97, 8syl5bb 285 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
109adantr 483 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
11 prid1g 4698 . . . . . . . . 9 (𝑈𝑉𝑈 ∈ {𝑈, 𝑣})
12 eleq2 2903 . . . . . . . . 9 ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → (𝑈 ∈ {𝑈, 𝑣} ↔ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1311, 12syl5ibcom 247 . . . . . . . 8 (𝑈𝑉 → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1413adantl 484 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1514reximdv 3275 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1610, 15sylbid 242 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1716rexlimdvw 3292 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1817con3d 155 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
195, 18sylbid 242 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
20193impia 1113 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  {cpr 4571  dom cdm 5557  cfv 6357  0cc0 10539  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834  UHGraphcuhgr 26843  VtxDegcvtxdg 27249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-xadd 12511  df-fz 12896  df-hash 13694  df-edg 26835  df-uhgr 26845  df-vtxdg 27250
This theorem is referenced by:  vtxdumgr0nedg  27277
  Copyright terms: Public domain W3C validator