MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxduhgr0nedg Structured version   Visualization version   GIF version

Theorem vtxduhgr0nedg 27282
Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxduhgr0nedg ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
Distinct variable groups:   𝑣,𝐺   𝑣,𝑈   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐸(𝑣)

Proof of Theorem vtxduhgr0nedg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eqid 2798 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
3 vtxdushgrfvedg.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
41, 2, 3vtxd0nedgb 27278 . . . 4 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
54adantl 485 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
6 vtxdushgrfvedg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
76eleq2i 2881 . . . . . . . 8 ({𝑈, 𝑣} ∈ 𝐸 ↔ {𝑈, 𝑣} ∈ (Edg‘𝐺))
82uhgredgiedgb 26919 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
97, 8syl5bb 286 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
109adantr 484 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
11 prid1g 4656 . . . . . . . . 9 (𝑈𝑉𝑈 ∈ {𝑈, 𝑣})
12 eleq2 2878 . . . . . . . . 9 ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → (𝑈 ∈ {𝑈, 𝑣} ↔ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1311, 12syl5ibcom 248 . . . . . . . 8 (𝑈𝑉 → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1413adantl 485 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1514reximdv 3232 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1610, 15sylbid 243 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1716rexlimdvw 3249 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1817con3d 155 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
195, 18sylbid 243 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
20193impia 1114 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  {cpr 4527  dom cdm 5519  cfv 6324  0cc0 10526  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UHGraphcuhgr 26849  VtxDegcvtxdg 27255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-vtxdg 27256
This theorem is referenced by:  vtxdumgr0nedg  27283
  Copyright terms: Public domain W3C validator