Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch2 | Structured version Visualization version GIF version |
Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
Ref | Expression |
---|---|
dnnumch2 | ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnnumch.f | . . 3 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
2 | dnnumch.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | dnnumch.g | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
4 | 1, 2, 3 | dnnumch1 40361 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
5 | f1ofo 6609 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → (𝐹 ↾ 𝑥):𝑥–onto→𝐴) | |
6 | forn 6579 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
8 | resss 5848 | . . . . . 6 ⊢ (𝐹 ↾ 𝑥) ⊆ 𝐹 | |
9 | rnss 5780 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥) ⊆ 𝐹 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) | |
10 | 8, 9 | mp1i 13 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) |
11 | 7, 10 | eqsstrrd 3931 | . . . 4 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
13 | 12 | rexlimdvw 3214 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
14 | 4, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ∖ cdif 3855 ⊆ wss 3858 ∅c0 4225 𝒫 cpw 4494 ↦ cmpt 5112 ran crn 5525 ↾ cres 5526 Oncon0 6169 –onto→wfo 6333 –1-1-onto→wf1o 6334 ‘cfv 6335 recscrecs 8017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-wrecs 7957 df-recs 8018 |
This theorem is referenced by: dnnumch3lem 40363 dnnumch3 40364 |
Copyright terms: Public domain | W3C validator |