![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch2 | Structured version Visualization version GIF version |
Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
Ref | Expression |
---|---|
dnnumch2 | ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnnumch.f | . . 3 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
2 | dnnumch.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | dnnumch.g | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
4 | 1, 2, 3 | dnnumch1 43003 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
5 | f1ofo 6871 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → (𝐹 ↾ 𝑥):𝑥–onto→𝐴) | |
6 | forn 6839 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
8 | resss 6033 | . . . . . 6 ⊢ (𝐹 ↾ 𝑥) ⊆ 𝐹 | |
9 | rnss 5964 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥) ⊆ 𝐹 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) | |
10 | 8, 9 | mp1i 13 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) |
11 | 7, 10 | eqsstrrd 4048 | . . . 4 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
13 | 12 | rexlimdvw 3166 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
14 | 4, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 Oncon0 6397 –onto→wfo 6573 –1-1-onto→wf1o 6574 ‘cfv 6575 recscrecs 8428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 |
This theorem is referenced by: dnnumch3lem 43005 dnnumch3 43006 |
Copyright terms: Public domain | W3C validator |