![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch2 | Structured version Visualization version GIF version |
Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
Ref | Expression |
---|---|
dnnumch2 | ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnnumch.f | . . 3 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
2 | dnnumch.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | dnnumch.g | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
4 | 1, 2, 3 | dnnumch1 41776 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
5 | f1ofo 6840 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → (𝐹 ↾ 𝑥):𝑥–onto→𝐴) | |
6 | forn 6808 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
8 | resss 6006 | . . . . . 6 ⊢ (𝐹 ↾ 𝑥) ⊆ 𝐹 | |
9 | rnss 5938 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥) ⊆ 𝐹 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) | |
10 | 8, 9 | mp1i 13 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) |
11 | 7, 10 | eqsstrrd 4021 | . . . 4 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
13 | 12 | rexlimdvw 3160 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
14 | 4, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 ↦ cmpt 5231 ran crn 5677 ↾ cres 5678 Oncon0 6364 –onto→wfo 6541 –1-1-onto→wf1o 6542 ‘cfv 6543 recscrecs 8369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 |
This theorem is referenced by: dnnumch3lem 41778 dnnumch3 41779 |
Copyright terms: Public domain | W3C validator |