| Mathbox for Stefan O'Rear | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch2 | Structured version Visualization version GIF version | ||
| Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | 
| dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | 
| Ref | Expression | 
|---|---|
| dnnumch2 | ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dnnumch.f | . . 3 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
| 2 | dnnumch.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | dnnumch.g | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
| 4 | 1, 2, 3 | dnnumch1 42994 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) | 
| 5 | f1ofo 6834 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → (𝐹 ↾ 𝑥):𝑥–onto→𝐴) | |
| 6 | forn 6802 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) | 
| 8 | resss 5999 | . . . . . 6 ⊢ (𝐹 ↾ 𝑥) ⊆ 𝐹 | |
| 9 | rnss 5930 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥) ⊆ 𝐹 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) | |
| 10 | 8, 9 | mp1i 13 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) | 
| 11 | 7, 10 | eqsstrrd 3999 | . . . 4 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹) | 
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) | 
| 13 | 12 | rexlimdvw 3147 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) | 
| 14 | 4, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 Vcvv 3463 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ↦ cmpt 5205 ran crn 5666 ↾ cres 5667 Oncon0 6363 –onto→wfo 6538 –1-1-onto→wf1o 6539 ‘cfv 6540 recscrecs 8391 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 | 
| This theorem is referenced by: dnnumch3lem 42996 dnnumch3 42997 | 
| Copyright terms: Public domain | W3C validator |