| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch2 | Structured version Visualization version GIF version | ||
| Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| dnnumch.f | ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
| dnnumch.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| dnnumch.g | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
| Ref | Expression |
|---|---|
| dnnumch2 | ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | . . 3 ⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) | |
| 2 | dnnumch.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | dnnumch.g | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) | |
| 4 | 1, 2, 3 | dnnumch1 43005 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
| 5 | f1ofo 6814 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → (𝐹 ↾ 𝑥):𝑥–onto→𝐴) | |
| 6 | forn 6782 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
| 8 | resss 5980 | . . . . . 6 ⊢ (𝐹 ↾ 𝑥) ⊆ 𝐹 | |
| 9 | rnss 5911 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥) ⊆ 𝐹 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) | |
| 10 | 8, 9 | mp1i 13 | . . . . 5 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → ran (𝐹 ↾ 𝑥) ⊆ ran 𝐹) |
| 11 | 7, 10 | eqsstrrd 3990 | . . . 4 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
| 13 | 12 | rexlimdvw 3141 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 → 𝐴 ⊆ ran 𝐹)) |
| 14 | 4, 13 | mpd 15 | 1 ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 ∃wrex 3055 Vcvv 3455 ∖ cdif 3919 ⊆ wss 3922 ∅c0 4304 𝒫 cpw 4571 ↦ cmpt 5196 ran crn 5647 ↾ cres 5648 Oncon0 6340 –onto→wfo 6517 –1-1-onto→wf1o 6518 ‘cfv 6519 recscrecs 8348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 |
| This theorem is referenced by: dnnumch3lem 43007 dnnumch3 43008 |
| Copyright terms: Public domain | W3C validator |