Step | Hyp | Ref
| Expression |
1 | | i1fadd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
2 | | i1ff 24390 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
4 | 3 | ffnd 6504 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℝ) |
5 | | i1fadd.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
6 | | i1ff 24390 |
. . . . . . . . 9
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
8 | 7 | ffnd 6504 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ℝ) |
9 | | reex 10679 |
. . . . . . . 8
⊢ ℝ
∈ V |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
V) |
11 | | inidm 4125 |
. . . . . . 7
⊢ (ℝ
∩ ℝ) = ℝ |
12 | 4, 8, 10, 10, 11 | offn 7423 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘f + 𝐺) Fn ℝ) |
13 | 12 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝐹 ∘f + 𝐺) Fn ℝ) |
14 | | fniniseg 6826 |
. . . . 5
⊢ ((𝐹 ∘f + 𝐺) Fn ℝ → (𝑧 ∈ (◡(𝐹 ∘f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴))) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡(𝐹 ∘f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴))) |
16 | 8 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝐺 Fn ℝ) |
17 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ℝ) |
18 | | fnfvelrn 6845 |
. . . . . . . 8
⊢ ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ ran 𝐺) |
19 | 16, 17, 18 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝐺‘𝑧) ∈ ran 𝐺) |
20 | | simprr 772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴) |
21 | | eqidd 2759 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
22 | | eqidd 2759 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
23 | 4, 8, 10, 10, 11, 21, 22 | ofval 7421 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝐹 ∘f + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
24 | 23 | ad2ant2r 746 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹 ∘f + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
25 | 20, 24 | eqtr3d 2795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝐴 = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
26 | 25 | oveq1d 7171 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝐴 − (𝐺‘𝑧)) = (((𝐹‘𝑧) + (𝐺‘𝑧)) − (𝐺‘𝑧))) |
27 | | ax-resscn 10645 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℂ |
28 | | fss 6517 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℝ⟶ℝ ∧
ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ) |
29 | 3, 27, 28 | sylancl 589 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
30 | 29 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝐹:ℝ⟶ℂ) |
31 | 30, 17 | ffvelrnd 6849 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝐹‘𝑧) ∈ ℂ) |
32 | | fss 6517 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:ℝ⟶ℝ ∧
ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ) |
33 | 7, 27, 32 | sylancl 589 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ℝ⟶ℂ) |
34 | 33 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝐺:ℝ⟶ℂ) |
35 | 34, 17 | ffvelrnd 6849 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝐺‘𝑧) ∈ ℂ) |
36 | 31, 35 | pncand 11049 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (((𝐹‘𝑧) + (𝐺‘𝑧)) − (𝐺‘𝑧)) = (𝐹‘𝑧)) |
37 | 26, 36 | eqtr2d 2794 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝐹‘𝑧) = (𝐴 − (𝐺‘𝑧))) |
38 | 4 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝐹 Fn ℝ) |
39 | | fniniseg 6826 |
. . . . . . . . . 10
⊢ (𝐹 Fn ℝ → (𝑧 ∈ (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − (𝐺‘𝑧))))) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − (𝐺‘𝑧))))) |
41 | 17, 37, 40 | mpbir2and 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))})) |
42 | | eqidd 2759 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
43 | | fniniseg 6826 |
. . . . . . . . . 10
⊢ (𝐺 Fn ℝ → (𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = (𝐺‘𝑧)))) |
44 | 16, 43 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = (𝐺‘𝑧)))) |
45 | 17, 42, 44 | mpbir2and 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (◡𝐺 “ {(𝐺‘𝑧)})) |
46 | 41, 45 | elind 4101 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) |
47 | | oveq2 7164 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐺‘𝑧) → (𝐴 − 𝑦) = (𝐴 − (𝐺‘𝑧))) |
48 | 47 | sneqd 4537 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘𝑧) → {(𝐴 − 𝑦)} = {(𝐴 − (𝐺‘𝑧))}) |
49 | 48 | imaeq2d 5906 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑧) → (◡𝐹 “ {(𝐴 − 𝑦)}) = (◡𝐹 “ {(𝐴 − (𝐺‘𝑧))})) |
50 | | sneq 4535 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐺‘𝑧) → {𝑦} = {(𝐺‘𝑧)}) |
51 | 50 | imaeq2d 5906 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑧) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {(𝐺‘𝑧)})) |
52 | 49, 51 | ineq12d 4120 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑧) → ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) = ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) |
53 | 52 | eleq2d 2837 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑧) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)})))) |
54 | 53 | rspcev 3543 |
. . . . . . 7
⊢ (((𝐺‘𝑧) ∈ ran 𝐺 ∧ 𝑧 ∈ ((◡𝐹 “ {(𝐴 − (𝐺‘𝑧))}) ∩ (◡𝐺 “ {(𝐺‘𝑧)}))) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
55 | 19, 46, 54 | syl2anc 587 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
56 | 55 | ex 416 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
57 | | elin 3876 |
. . . . . . 7
⊢ (𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ (𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦}))) |
58 | 4 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → 𝐹 Fn ℝ) |
59 | | fniniseg 6826 |
. . . . . . . . . 10
⊢ (𝐹 Fn ℝ → (𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)))) |
60 | 58, 59 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)))) |
61 | 8 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → 𝐺 Fn ℝ) |
62 | | fniniseg 6826 |
. . . . . . . . . 10
⊢ (𝐺 Fn ℝ → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
63 | 61, 62 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
64 | 60, 63 | anbi12d 633 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦)))) |
65 | | anandi 675 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
66 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝑧 ∈ ℝ) |
67 | 23 | ad2ant2r 746 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐹 ∘f + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
68 | | simprrl 780 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝐹‘𝑧) = (𝐴 − 𝑦)) |
69 | | simprrr 781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝐺‘𝑧) = 𝑦) |
70 | 68, 69 | oveq12d 7174 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐹‘𝑧) + (𝐺‘𝑧)) = ((𝐴 − 𝑦) + 𝑦)) |
71 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝐴 ∈ ℂ) |
72 | 33 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝐺:ℝ⟶ℂ) |
73 | 72, 66 | ffvelrnd 6849 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝐺‘𝑧) ∈ ℂ) |
74 | 69, 73 | eqeltrrd 2853 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → 𝑦 ∈ ℂ) |
75 | 71, 74 | npcand 11052 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐴 − 𝑦) + 𝑦) = 𝐴) |
76 | 67, 70, 75 | 3eqtrd 2797 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴) |
77 | 66, 76 | jca 515 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦))) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴)) |
78 | 77 | ex 416 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹‘𝑧) = (𝐴 − 𝑦) ∧ (𝐺‘𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴))) |
79 | 65, 78 | syl5bir 246 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (((𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = (𝐴 − 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴))) |
80 | 64, 79 | sylbid 243 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ (◡𝐹 “ {(𝐴 − 𝑦)}) ∧ 𝑧 ∈ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴))) |
81 | 57, 80 | syl5bi 245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴))) |
82 | 81 | rexlimdvw 3214 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴))) |
83 | 56, 82 | impbid 215 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹 ∘f + 𝐺)‘𝑧) = 𝐴) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
84 | 15, 83 | bitrd 282 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡(𝐹 ∘f + 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
85 | | eliun 4890 |
. . 3
⊢ (𝑧 ∈ ∪ 𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |
86 | 84, 85 | bitr4di 292 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (𝑧 ∈ (◡(𝐹 ∘f + 𝐺) “ {𝐴}) ↔ 𝑧 ∈ ∪
𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦})))) |
87 | 86 | eqrdv 2756 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ℂ) → (◡(𝐹 ∘f + 𝐺) “ {𝐴}) = ∪
𝑦 ∈ ran 𝐺((◡𝐹 “ {(𝐴 − 𝑦)}) ∩ (◡𝐺 “ {𝑦}))) |