MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1faddlem Structured version   Visualization version   GIF version

Theorem i1faddlem 25622
Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1faddlem ((𝜑𝐴 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1faddlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 25605 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
43ffnd 6652 . . . . . . 7 (𝜑𝐹 Fn ℝ)
5 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
6 i1ff 25605 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
87ffnd 6652 . . . . . . 7 (𝜑𝐺 Fn ℝ)
9 reex 11097 . . . . . . . 8 ℝ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
11 inidm 4177 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
124, 8, 10, 10, 11offn 7623 . . . . . 6 (𝜑 → (𝐹f + 𝐺) Fn ℝ)
1312adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (𝐹f + 𝐺) Fn ℝ)
14 fniniseg 6993 . . . . 5 ((𝐹f + 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
1513, 14syl 17 . . . 4 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
168ad2antrr 726 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐺 Fn ℝ)
17 simprl 770 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ℝ)
18 fnfvelrn 7013 . . . . . . . 8 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
1916, 17, 18syl2anc 584 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
20 simprr 772 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹f + 𝐺)‘𝑧) = 𝐴)
21 eqidd 2732 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
22 eqidd 2732 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
234, 8, 10, 10, 11, 21, 22ofval 7621 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2423ad2ant2r 747 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2520, 24eqtr3d 2768 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐴 = ((𝐹𝑧) + (𝐺𝑧)))
2625oveq1d 7361 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐴 − (𝐺𝑧)) = (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)))
27 ax-resscn 11063 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
28 fss 6667 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
293, 27, 28sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℂ)
3029ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐹:ℝ⟶ℂ)
3130, 17ffvelcdmd 7018 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
32 fss 6667 . . . . . . . . . . . . . 14 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
337, 27, 32sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐺:ℝ⟶ℂ)
3433ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐺:ℝ⟶ℂ)
3534, 17ffvelcdmd 7018 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
3631, 35pncand 11473 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)) = (𝐹𝑧))
3726, 36eqtr2d 2767 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) = (𝐴 − (𝐺𝑧)))
384ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐹 Fn ℝ)
39 fniniseg 6993 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4038, 39syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4117, 37, 40mpbir2and 713 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}))
42 eqidd 2732 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
43 fniniseg 6993 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4416, 43syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4517, 42, 44mpbir2and 713 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
4641, 45elind 4150 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
47 oveq2 7354 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴𝑦) = (𝐴 − (𝐺𝑧)))
4847sneqd 4588 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴𝑦)} = {(𝐴 − (𝐺𝑧))})
4948imaeq2d 6009 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴𝑦)}) = (𝐹 “ {(𝐴 − (𝐺𝑧))}))
50 sneq 4586 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
5150imaeq2d 6009 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
5249, 51ineq12d 4171 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
5352eleq2d 2817 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
5453rspcev 3577 . . . . . . 7 (((𝐺𝑧) ∈ ran 𝐺𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5519, 46, 54syl2anc 584 . . . . . 6 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5655ex 412 . . . . 5 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
57 elin 3918 . . . . . . 7 (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
584adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐹 Fn ℝ)
59 fniniseg 6993 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
6058, 59syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
618adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐺 Fn ℝ)
62 fniniseg 6993 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6361, 62syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6460, 63anbi12d 632 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
65 anandi 676 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
66 simprl 770 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑧 ∈ ℝ)
6723ad2ant2r 747 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
68 simprrl 780 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐹𝑧) = (𝐴𝑦))
69 simprrr 781 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) = 𝑦)
7068, 69oveq12d 7364 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹𝑧) + (𝐺𝑧)) = ((𝐴𝑦) + 𝑦))
71 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐴 ∈ ℂ)
7233ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐺:ℝ⟶ℂ)
7372, 66ffvelcdmd 7018 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) ∈ ℂ)
7469, 73eqeltrrd 2832 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑦 ∈ ℂ)
7571, 74npcand 11476 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐴𝑦) + 𝑦) = 𝐴)
7667, 70, 753eqtrd 2770 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹f + 𝐺)‘𝑧) = 𝐴)
7766, 76jca 511 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴))
7877ex 412 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
7965, 78biimtrrid 243 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → (((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8064, 79sylbid 240 . . . . . . 7 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8157, 80biimtrid 242 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8281rexlimdvw 3138 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8356, 82impbid 212 . . . 4 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8415, 83bitrd 279 . . 3 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
85 eliun 4945 . . 3 (𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
8684, 85bitr4di 289 . 2 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8786eqrdv 2729 1 ((𝜑𝐴 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cin 3901  wss 3902  {csn 4576   ciun 4941  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  cc 11004  cr 11005   + caddc 11009  cmin 11344  1citg1 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-sum 15594  df-itg1 25549
This theorem is referenced by:  i1fadd  25624  itg1addlem4  25628
  Copyright terms: Public domain W3C validator