MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1faddlem Structured version   Visualization version   GIF version

Theorem i1faddlem 25646
Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1faddlem ((𝜑𝐴 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1faddlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 25629 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
43ffnd 6707 . . . . . . 7 (𝜑𝐹 Fn ℝ)
5 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
6 i1ff 25629 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
87ffnd 6707 . . . . . . 7 (𝜑𝐺 Fn ℝ)
9 reex 11220 . . . . . . . 8 ℝ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
11 inidm 4202 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
124, 8, 10, 10, 11offn 7684 . . . . . 6 (𝜑 → (𝐹f + 𝐺) Fn ℝ)
1312adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (𝐹f + 𝐺) Fn ℝ)
14 fniniseg 7050 . . . . 5 ((𝐹f + 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
1513, 14syl 17 . . . 4 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
168ad2antrr 726 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐺 Fn ℝ)
17 simprl 770 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ℝ)
18 fnfvelrn 7070 . . . . . . . 8 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
1916, 17, 18syl2anc 584 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
20 simprr 772 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹f + 𝐺)‘𝑧) = 𝐴)
21 eqidd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
22 eqidd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
234, 8, 10, 10, 11, 21, 22ofval 7682 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2423ad2ant2r 747 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2520, 24eqtr3d 2772 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐴 = ((𝐹𝑧) + (𝐺𝑧)))
2625oveq1d 7420 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐴 − (𝐺𝑧)) = (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)))
27 ax-resscn 11186 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
28 fss 6722 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
293, 27, 28sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℂ)
3029ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐹:ℝ⟶ℂ)
3130, 17ffvelcdmd 7075 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
32 fss 6722 . . . . . . . . . . . . . 14 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
337, 27, 32sylancl 586 . . . . . . . . . . . . 13 (𝜑𝐺:ℝ⟶ℂ)
3433ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐺:ℝ⟶ℂ)
3534, 17ffvelcdmd 7075 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
3631, 35pncand 11595 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)) = (𝐹𝑧))
3726, 36eqtr2d 2771 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) = (𝐴 − (𝐺𝑧)))
384ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐹 Fn ℝ)
39 fniniseg 7050 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4038, 39syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4117, 37, 40mpbir2and 713 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}))
42 eqidd 2736 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
43 fniniseg 7050 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4416, 43syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4517, 42, 44mpbir2and 713 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
4641, 45elind 4175 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
47 oveq2 7413 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴𝑦) = (𝐴 − (𝐺𝑧)))
4847sneqd 4613 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴𝑦)} = {(𝐴 − (𝐺𝑧))})
4948imaeq2d 6047 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴𝑦)}) = (𝐹 “ {(𝐴 − (𝐺𝑧))}))
50 sneq 4611 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
5150imaeq2d 6047 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
5249, 51ineq12d 4196 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
5352eleq2d 2820 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
5453rspcev 3601 . . . . . . 7 (((𝐺𝑧) ∈ ran 𝐺𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5519, 46, 54syl2anc 584 . . . . . 6 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5655ex 412 . . . . 5 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
57 elin 3942 . . . . . . 7 (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
584adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐹 Fn ℝ)
59 fniniseg 7050 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
6058, 59syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
618adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐺 Fn ℝ)
62 fniniseg 7050 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6361, 62syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6460, 63anbi12d 632 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
65 anandi 676 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
66 simprl 770 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑧 ∈ ℝ)
6723ad2ant2r 747 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
68 simprrl 780 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐹𝑧) = (𝐴𝑦))
69 simprrr 781 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) = 𝑦)
7068, 69oveq12d 7423 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹𝑧) + (𝐺𝑧)) = ((𝐴𝑦) + 𝑦))
71 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐴 ∈ ℂ)
7233ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐺:ℝ⟶ℂ)
7372, 66ffvelcdmd 7075 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) ∈ ℂ)
7469, 73eqeltrrd 2835 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑦 ∈ ℂ)
7571, 74npcand 11598 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐴𝑦) + 𝑦) = 𝐴)
7667, 70, 753eqtrd 2774 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹f + 𝐺)‘𝑧) = 𝐴)
7766, 76jca 511 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴))
7877ex 412 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
7965, 78biimtrrid 243 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → (((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8064, 79sylbid 240 . . . . . . 7 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8157, 80biimtrid 242 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8281rexlimdvw 3146 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8356, 82impbid 212 . . . 4 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8415, 83bitrd 279 . . 3 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
85 eliun 4971 . . 3 (𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
8684, 85bitr4di 289 . 2 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8786eqrdv 2733 1 ((𝜑𝐴 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  cin 3925  wss 3926  {csn 4601   ciun 4967  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  cc 11127  cr 11128   + caddc 11132  cmin 11466  1citg1 25568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468  df-sum 15703  df-itg1 25573
This theorem is referenced by:  i1fadd  25648  itg1addlem4  25652
  Copyright terms: Public domain W3C validator