![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > midwwlks2s3 | Structured version Visualization version GIF version |
Description: There is a vertex between the endpoints of a walk of length 2 between two vertices as length 3 string. (Contributed by AV, 10-Jan-2022.) |
Ref | Expression |
---|---|
elwwlks2s3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
midwwlks2s3 | ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwwlks2s3.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | elwwlks2s3 29070 | . 2 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉) |
3 | fveq1 6877 | . . . . . . . 8 ⊢ (𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = (〈“𝑎𝑏𝑐”〉‘1)) | |
4 | s3fv1 14825 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝑉 → (〈“𝑎𝑏𝑐”〉‘1) = 𝑏) | |
5 | 3, 4 | sylan9eqr 2793 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝑉 ∧ 𝑊 = 〈“𝑎𝑏𝑐”〉) → (𝑊‘1) = 𝑏) |
6 | 5 | ex 413 | . . . . . 6 ⊢ (𝑏 ∈ 𝑉 → (𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = 𝑏)) |
7 | 6 | adantl 482 | . . . . 5 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = 𝑏)) |
8 | 7 | rexlimdvw 3159 | . . . 4 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉 → (𝑊‘1) = 𝑏)) |
9 | 8 | reximdva 3167 | . . 3 ⊢ (𝑎 ∈ 𝑉 → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉 → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏)) |
10 | 9 | rexlimiv 3147 | . 2 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 𝑊 = 〈“𝑎𝑏𝑐”〉 → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏) |
11 | 2, 10 | syl 17 | 1 ⊢ (𝑊 ∈ (2 WWalksN 𝐺) → ∃𝑏 ∈ 𝑉 (𝑊‘1) = 𝑏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 ‘cfv 6532 (class class class)co 7393 1c1 11093 2c2 12249 〈“cs3 14775 Vtxcvtx 28121 WWalksN cwwlksn 28945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-fzo 13610 df-hash 14273 df-word 14447 df-concat 14503 df-s1 14528 df-s2 14781 df-s3 14782 df-wwlks 28949 df-wwlksn 28950 |
This theorem is referenced by: fusgreg2wsp 29454 |
Copyright terms: Public domain | W3C validator |