MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn0 Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn0 29878
Description: For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn0 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊   𝑦,𝑃

Proof of Theorem wwlksnredwwlkn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
21wwlksnredwwlkn 29877 . . . 4 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
32imp 406 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4 simpl 482 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊 prefix (𝑁 + 1)) = 𝑦)
54adantl 481 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑊 prefix (𝑁 + 1)) = 𝑦)
6 fveq1 6875 . . . . . . . . . . . . . 14 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
76eqcoms 2743 . . . . . . . . . . . . 13 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
87adantr 480 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 1wwlknp 29825 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
11 nn0p1nn 12540 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
12 peano2nn0 12541 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
13 nn0re 12510 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
14 lep1 12082 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℝ → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
1512, 13, 143syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
16 peano2nn0 12541 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1716nn0zd 12614 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℤ)
18 fznn 13609 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 + 1) + 1) ∈ ℤ → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
1912, 17, 183syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
2011, 15, 19mpbir2and 713 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
21 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (1...(♯‘𝑊)) = (1...((𝑁 + 1) + 1)))
2221eleq2d 2820 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
2320, 22imbitrrid 246 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
2423adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
25 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → 𝑊 ∈ Word (Vtx‘𝐺))
2624, 25jctild 525 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
27263adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2810, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2928impcom 407 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3029adantl 481 . . . . . . . . . . . . . . 15 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3130adantr 480 . . . . . . . . . . . . . 14 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3231adantl 481 . . . . . . . . . . . . 13 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
33 pfxfv0 14710 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
35 simprll 778 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
368, 34, 353eqtrd 2774 . . . . . . . . . . 11 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
3736ex 412 . . . . . . . . . 10 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3837adantr 480 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3938impcom 407 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑦‘0) = 𝑃)
40 simpr 484 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
4140adantl 481 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
425, 39, 413jca 1128 . . . . . . 7 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4342ex 412 . . . . . 6 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4443reximdva 3153 . . . . 5 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4544ex 412 . . . 4 ((𝑊‘0) = 𝑃 → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
4645com13 88 . . 3 (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
473, 46mpcom 38 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4829, 33syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
4948eqcomd 2741 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
5049adantl 481 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
51 fveq1 6875 . . . . . . . . 9 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
5251adantr 480 . . . . . . . 8 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
5352adantr 480 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
54 simpr 484 . . . . . . . 8 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (𝑦‘0) = 𝑃)
5554adantr 480 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
5650, 53, 553eqtrd 2774 . . . . . 6 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
5756ex 412 . . . . 5 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
58573adant3 1132 . . . 4 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
5958com12 32 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6059rexlimdvw 3146 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6147, 60impbid 212 1 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {cpr 4603   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  cle 11270  cn 12240  0cn0 12501  cz 12588  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531  lastSclsw 14580   prefix cpfx 14688  Vtxcvtx 28975  Edgcedg 29026   WWalksN cwwlksn 29808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-substr 14659  df-pfx 14689  df-wwlks 29812  df-wwlksn 29813
This theorem is referenced by:  rusgrnumwwlks  29956
  Copyright terms: Public domain W3C validator