MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn0 Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn0 29830
Description: For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn0 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊   𝑦,𝑃

Proof of Theorem wwlksnredwwlkn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
21wwlksnredwwlkn 29829 . . . 4 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
32imp 405 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4 simpl 481 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊 prefix (𝑁 + 1)) = 𝑦)
54adantl 480 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑊 prefix (𝑁 + 1)) = 𝑦)
6 fveq1 6900 . . . . . . . . . . . . . 14 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
76eqcoms 2734 . . . . . . . . . . . . 13 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
87adantr 479 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9 eqid 2726 . . . . . . . . . . . . . . . . . . 19 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 1wwlknp 29777 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
11 nn0p1nn 12563 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
12 peano2nn0 12564 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
13 nn0re 12533 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
14 lep1 12106 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℝ → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
1512, 13, 143syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
16 peano2nn0 12564 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1716nn0zd 12636 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℤ)
18 fznn 13623 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 + 1) + 1) ∈ ℤ → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
1912, 17, 183syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
2011, 15, 19mpbir2and 711 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
21 oveq2 7432 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (1...(♯‘𝑊)) = (1...((𝑁 + 1) + 1)))
2221eleq2d 2812 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
2320, 22imbitrrid 245 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
2423adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
25 simpl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → 𝑊 ∈ Word (Vtx‘𝐺))
2624, 25jctild 524 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
27263adant3 1129 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2810, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2928impcom 406 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3029adantl 480 . . . . . . . . . . . . . . 15 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3130adantr 479 . . . . . . . . . . . . . 14 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3231adantl 480 . . . . . . . . . . . . 13 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
33 pfxfv0 14700 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
35 simprll 777 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
368, 34, 353eqtrd 2770 . . . . . . . . . . 11 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
3736ex 411 . . . . . . . . . 10 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3837adantr 479 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3938impcom 406 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑦‘0) = 𝑃)
40 simpr 483 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
4140adantl 480 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
425, 39, 413jca 1125 . . . . . . 7 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4342ex 411 . . . . . 6 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4443reximdva 3158 . . . . 5 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4544ex 411 . . . 4 ((𝑊‘0) = 𝑃 → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
4645com13 88 . . 3 (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
473, 46mpcom 38 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4829, 33syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
4948eqcomd 2732 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
5049adantl 480 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
51 fveq1 6900 . . . . . . . . 9 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
5251adantr 479 . . . . . . . 8 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
5352adantr 479 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
54 simpr 483 . . . . . . . 8 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (𝑦‘0) = 𝑃)
5554adantr 479 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
5650, 53, 553eqtrd 2770 . . . . . 6 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
5756ex 411 . . . . 5 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
58573adant3 1129 . . . 4 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
5958com12 32 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6059rexlimdvw 3150 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6147, 60impbid 211 1 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {cpr 4635   class class class wbr 5153  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159   + caddc 11161  cle 11299  cn 12264  0cn0 12524  cz 12610  ...cfz 13538  ..^cfzo 13681  chash 14347  Word cword 14522  lastSclsw 14570   prefix cpfx 14678  Vtxcvtx 28932  Edgcedg 28983   WWalksN cwwlksn 29760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-lsw 14571  df-substr 14649  df-pfx 14679  df-wwlks 29764  df-wwlksn 29765
This theorem is referenced by:  rusgrnumwwlks  29908
  Copyright terms: Public domain W3C validator