MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn0 Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn0 27682
Description: For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn0 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊   𝑦,𝑃

Proof of Theorem wwlksnredwwlkn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
21wwlksnredwwlkn 27681 . . . 4 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
32imp 410 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4 simpl 486 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊 prefix (𝑁 + 1)) = 𝑦)
54adantl 485 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑊 prefix (𝑁 + 1)) = 𝑦)
6 fveq1 6644 . . . . . . . . . . . . . 14 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
76eqcoms 2806 . . . . . . . . . . . . 13 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
87adantr 484 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
9 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (Vtx‘𝐺) = (Vtx‘𝐺)
109, 1wwlknp 27629 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
11 nn0p1nn 11924 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
12 peano2nn0 11925 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
13 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
14 lep1 11470 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℝ → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
1512, 13, 143syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
16 peano2nn0 11925 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
1716nn0zd 12073 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℤ)
18 fznn 12970 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 + 1) + 1) ∈ ℤ → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
1912, 17, 183syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))))
2011, 15, 19mpbir2and 712 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
21 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (1...(♯‘𝑊)) = (1...((𝑁 + 1) + 1)))
2221eleq2d 2875 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
2320, 22syl5ibr 249 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
2423adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(♯‘𝑊))))
25 simpl 486 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → 𝑊 ∈ Word (Vtx‘𝐺))
2624, 25jctild 529 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
27263adant3 1129 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2810, 27syl 17 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))))
2928impcom 411 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3029adantl 485 . . . . . . . . . . . . . . 15 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3130adantr 484 . . . . . . . . . . . . . 14 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
3231adantl 485 . . . . . . . . . . . . 13 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
33 pfxfv0 14045 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
3432, 33syl 17 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
35 simprll 778 . . . . . . . . . . . 12 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
368, 34, 353eqtrd 2837 . . . . . . . . . . 11 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
3736ex 416 . . . . . . . . . 10 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3837adantr 484 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃))
3938impcom 411 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑦‘0) = 𝑃)
40 simpr 488 . . . . . . . . 9 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
4140adantl 485 . . . . . . . 8 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)
425, 39, 413jca 1125 . . . . . . 7 (((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
4342ex 416 . . . . . 6 ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4443reximdva 3233 . . . . 5 (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4544ex 416 . . . 4 ((𝑊‘0) = 𝑃 → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
4645com13 88 . . 3 (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))))
473, 46mpcom 38 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
4829, 33syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0))
4948eqcomd 2804 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
5049adantl 485 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0))
51 fveq1 6644 . . . . . . . . 9 ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
5251adantr 484 . . . . . . . 8 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
5352adantr 484 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0))
54 simpr 488 . . . . . . . 8 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (𝑦‘0) = 𝑃)
5554adantr 484 . . . . . . 7 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑦‘0) = 𝑃)
5650, 53, 553eqtrd 2837 . . . . . 6 ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = 𝑃)
5756ex 416 . . . . 5 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
58573adant3 1129 . . . 4 (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃))
5958com12 32 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6059rexlimdvw 3249 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃))
6147, 60impbid 215 1 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {cpr 4527   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905   prefix cpfx 14023  Vtxcvtx 26789  Edgcedg 26840   WWalksN cwwlksn 27612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-substr 13994  df-pfx 14024  df-wwlks 27616  df-wwlksn 27617
This theorem is referenced by:  rusgrnumwwlks  27760
  Copyright terms: Public domain W3C validator