Step | Hyp | Ref
| Expression |
1 | | wwlksnredwwlkn.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
2 | 1 | wwlksnredwwlkn 28260 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))) |
3 | 2 | imp 407 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) |
4 | | simpl 483 |
. . . . . . . . 9
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊 prefix (𝑁 + 1)) = 𝑦) |
5 | 4 | adantl 482 |
. . . . . . . 8
⊢
(((((𝑊‘0) =
𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑊 prefix (𝑁 + 1)) = 𝑦) |
6 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑊 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0)) |
7 | 6 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢ ((𝑊 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0)) |
8 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = ((𝑊 prefix (𝑁 + 1))‘0)) |
9 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
10 | 9, 1 | wwlknp 28208 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
11 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
12 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
13 | | nn0re 12242 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 + 1) ∈ ℕ0
→ (𝑁 + 1) ∈
ℝ) |
14 | | lep1 11816 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 + 1) ∈ ℝ →
(𝑁 + 1) ≤ ((𝑁 + 1) + 1)) |
15 | 12, 13, 14 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)) |
16 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1) + 1) ∈
ℕ0) |
17 | 16 | nn0zd 12424 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1) + 1) ∈
ℤ) |
18 | | fznn 13324 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑁 + 1) + 1) ∈ ℤ →
((𝑁 + 1) ∈
(1...((𝑁 + 1) + 1)) ↔
((𝑁 + 1) ∈ ℕ
∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))) |
19 | 12, 17, 18 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) ∈
(1...((𝑁 + 1) + 1)) ↔
((𝑁 + 1) ∈ ℕ
∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))) |
20 | 11, 15, 19 | mpbir2and 710 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
(1...((𝑁 + 1) +
1))) |
21 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
(1...(♯‘𝑊)) =
(1...((𝑁 + 1) +
1))) |
22 | 21 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
((𝑁 + 1) ∈
(1...(♯‘𝑊))
↔ (𝑁 + 1) ∈
(1...((𝑁 + 1) +
1)))) |
23 | 20, 22 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
(1...(♯‘𝑊)))) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈
(1...(♯‘𝑊)))) |
25 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → 𝑊 ∈ Word (Vtx‘𝐺)) |
26 | 24, 25 | jctild 526 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))) |
27 | 26 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))) |
28 | 10, 27 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))) |
29 | 28 | impcom 408 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))) |
30 | 29 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))) |
31 | 30 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))) |
33 | | pfxfv0 14405 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0)) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0)) |
35 | | simprll 776 |
. . . . . . . . . . . 12
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑊‘0) = 𝑃) |
36 | 8, 34, 35 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺))) → (𝑦‘0) = 𝑃) |
37 | 36 | ex 413 |
. . . . . . . . . 10
⊢ ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃)) |
38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (𝑦‘0) = 𝑃)) |
39 | 38 | impcom 408 |
. . . . . . . 8
⊢
(((((𝑊‘0) =
𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → (𝑦‘0) = 𝑃) |
40 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) |
41 | 40 | adantl 482 |
. . . . . . . 8
⊢
(((((𝑊‘0) =
𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) |
42 | 5, 39, 41 | 3jca 1127 |
. . . . . . 7
⊢
(((((𝑊‘0) =
𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) ∧ ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)) |
43 | 42 | ex 413 |
. . . . . 6
⊢ ((((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))) |
44 | 43 | reximdva 3203 |
. . . . 5
⊢ (((𝑊‘0) = 𝑃 ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))) |
45 | 44 | ex 413 |
. . . 4
⊢ ((𝑊‘0) = 𝑃 → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))) |
46 | 45 | com13 88 |
. . 3
⊢
(∃𝑦 ∈
(𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))) |
47 | 3, 46 | mpcom 38 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))) |
48 | 29, 33 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑊‘0)) |
49 | 48 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0)) |
50 | 49 | adantl 482 |
. . . . . . 7
⊢ ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = ((𝑊 prefix (𝑁 + 1))‘0)) |
51 | | fveq1 6773 |
. . . . . . . . 9
⊢ ((𝑊 prefix (𝑁 + 1)) = 𝑦 → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0)) |
52 | 51 | adantr 481 |
. . . . . . . 8
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0)) |
53 | 52 | adantr 481 |
. . . . . . 7
⊢ ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → ((𝑊 prefix (𝑁 + 1))‘0) = (𝑦‘0)) |
54 | | simpr 485 |
. . . . . . . 8
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (𝑦‘0) = 𝑃) |
55 | 54 | adantr 481 |
. . . . . . 7
⊢ ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑦‘0) = 𝑃) |
56 | 50, 53, 55 | 3eqtrd 2782 |
. . . . . 6
⊢ ((((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) ∧ (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))) → (𝑊‘0) = 𝑃) |
57 | 56 | ex 413 |
. . . . 5
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃)) |
58 | 57 | 3adant3 1131 |
. . . 4
⊢ (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊‘0) = 𝑃)) |
59 | 58 | com12 32 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃)) |
60 | 59 | rexlimdvw 3219 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) → (𝑊‘0) = 𝑃)) |
61 | 47, 60 | impbid 211 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))) |