| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv | Structured version Visualization version GIF version | ||
| Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5339). Special case of riota2f 7327. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotasv.1 | ⊢ 𝐴 ∈ V |
| riotasv.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
| Ref | Expression |
|---|---|
| riotasv | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasv.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | riotasv.2 | . . . . 5 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
| 4 | id 22 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 ∈ 𝐴) | |
| 5 | 3, 4 | riotasvd 39065 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐴 ∈ V) → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
| 6 | 1, 5 | mpan2 691 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
| 7 | 6 | 3impib 1116 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-undef 8203 |
| This theorem is referenced by: cdleme26e 40468 cdleme26eALTN 40470 cdleme26fALTN 40471 cdleme26f 40472 cdleme26f2ALTN 40473 cdleme26f2 40474 |
| Copyright terms: Public domain | W3C validator |