| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv | Structured version Visualization version GIF version | ||
| Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5358). Special case of riota2f 7368. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotasv.1 | ⊢ 𝐴 ∈ V |
| riotasv.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
| Ref | Expression |
|---|---|
| riotasv | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotasv.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | riotasv.2 | . . . . 5 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
| 4 | id 22 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 ∈ 𝐴) | |
| 5 | 3, 4 | riotasvd 38949 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐴 ∈ V) → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
| 6 | 1, 5 | mpan2 691 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
| 7 | 6 | 3impib 1116 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-undef 8252 |
| This theorem is referenced by: cdleme26e 40353 cdleme26eALTN 40355 cdleme26fALTN 40356 cdleme26f 40357 cdleme26f2ALTN 40358 cdleme26f2 40359 |
| Copyright terms: Public domain | W3C validator |