Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv Structured version   Visualization version   GIF version

Theorem riotasv 36900
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5321). Special case of riota2f 7237. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riotasv.1 𝐴 ∈ V
riotasv.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv ((𝐷𝐴𝑦𝐵𝜑) → 𝐷 = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem riotasv
StepHypRef Expression
1 riotasv.1 . . 3 𝐴 ∈ V
2 riotasv.2 . . . . 5 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
32a1i 11 . . . 4 (𝐷𝐴𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
4 id 22 . . . 4 (𝐷𝐴𝐷𝐴)
53, 4riotasvd 36897 . . 3 ((𝐷𝐴𝐴 ∈ V) → ((𝑦𝐵𝜑) → 𝐷 = 𝐶))
61, 5mpan2 687 . 2 (𝐷𝐴 → ((𝑦𝐵𝜑) → 𝐷 = 𝐶))
763impib 1114 1 ((𝐷𝐴𝑦𝐵𝜑) → 𝐷 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-undef 8060
This theorem is referenced by:  cdleme26e  38300  cdleme26eALTN  38302  cdleme26fALTN  38303  cdleme26f  38304  cdleme26f2ALTN  38305  cdleme26f2  38306
  Copyright terms: Public domain W3C validator