Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv Structured version   Visualization version   GIF version

Theorem riotasv 38435
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5405). Special case of riota2f 7405. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riotasv.1 𝐴 ∈ V
riotasv.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv ((𝐷𝐴𝑦𝐵𝜑) → 𝐷 = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem riotasv
StepHypRef Expression
1 riotasv.1 . . 3 𝐴 ∈ V
2 riotasv.2 . . . . 5 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
32a1i 11 . . . 4 (𝐷𝐴𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
4 id 22 . . . 4 (𝐷𝐴𝐷𝐴)
53, 4riotasvd 38432 . . 3 ((𝐷𝐴𝐴 ∈ V) → ((𝑦𝐵𝜑) → 𝐷 = 𝐶))
61, 5mpan2 689 . 2 (𝐷𝐴 → ((𝑦𝐵𝜑) → 𝐷 = 𝐶))
763impib 1113 1 ((𝐷𝐴𝑦𝐵𝜑) → 𝐷 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3057  Vcvv 3471  crio 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-riotaBAD 38429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-riota 7380  df-undef 8283
This theorem is referenced by:  cdleme26e  39836  cdleme26eALTN  39838  cdleme26fALTN  39839  cdleme26f  39840  cdleme26f2ALTN  39841  cdleme26f2  39842
  Copyright terms: Public domain W3C validator