![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv | Structured version Visualization version GIF version |
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5392). Special case of riota2f 7383. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riotasv.1 | ⊢ 𝐴 ∈ V |
riotasv.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
Ref | Expression |
---|---|
riotasv | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotasv.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | riotasv.2 | . . . . 5 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
4 | id 22 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 ∈ 𝐴) | |
5 | 3, 4 | riotasvd 38320 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐴 ∈ V) → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
6 | 1, 5 | mpan2 688 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
7 | 6 | 3impib 1113 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ℩crio 7357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-riotaBAD 38317 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-riota 7358 df-undef 8254 |
This theorem is referenced by: cdleme26e 39724 cdleme26eALTN 39726 cdleme26fALTN 39727 cdleme26f 39728 cdleme26f2ALTN 39729 cdleme26f2 39730 |
Copyright terms: Public domain | W3C validator |