Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo0lid Structured version   Visualization version   GIF version

Theorem rngo0lid 37901
Description: The additive identity of a ring is a left identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring0cl.1 𝐺 = (1st𝑅)
ring0cl.2 𝑋 = ran 𝐺
ring0cl.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngo0lid ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = 𝐴)

Proof of Theorem rngo0lid
StepHypRef Expression
1 ring0cl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 37890 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ring0cl.2 . . 3 𝑋 = ran 𝐺
4 ring0cl.3 . . 3 𝑍 = (GId‘𝐺)
53, 4grpolid 30460 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = 𝐴)
62, 5sylan 580 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ran crn 5620  cfv 6482  (class class class)co 7349  1st c1st 7922  GrpOpcgr 30433  GIdcgi 30434  RingOpscrngo 37874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-ov 7352  df-1st 7924  df-2nd 7925  df-grpo 30437  df-gid 30438  df-ablo 30489  df-rngo 37875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator