![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo0lid | Structured version Visualization version GIF version |
Description: The additive identity of a ring is a left identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring0cl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ring0cl.2 | ⊢ 𝑋 = ran 𝐺 |
ring0cl.3 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
rngo0lid | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring0cl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37911 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ring0cl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | ring0cl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grpolid 30561 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
6 | 2, 5 | sylan 580 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ran crn 5694 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 GrpOpcgr 30534 GIdcgi 30535 RingOpscrngo 37895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fo 6575 df-fv 6577 df-riota 7395 df-ov 7441 df-1st 8022 df-2nd 8023 df-grpo 30538 df-gid 30539 df-ablo 30590 df-rngo 37896 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |