![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngolz | Structured version Visualization version GIF version |
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringlz.1 | ⊢ 𝑍 = (GId‘𝐺) |
ringlz.2 | ⊢ 𝑋 = ran 𝐺 |
ringlz.3 | ⊢ 𝐺 = (1st ‘𝑅) |
ringlz.4 | ⊢ 𝐻 = (2nd ‘𝑅) |
Ref | Expression |
---|---|
rngolz | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlz.3 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37611 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ringlz.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
4 | ringlz.1 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grpoidcl 30447 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
6 | 3, 4 | grpolid 30449 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
7 | 2, 5, 6 | syl2anc2 583 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍) |
8 | 7 | adantr 479 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
9 | 8 | oveq1d 7439 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = (𝑍𝐻𝐴)) |
10 | 1, 3, 4 | rngo0cl 37620 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
11 | 10 | adantr 479 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
12 | simpr 483 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
13 | 11, 11, 12 | 3jca 1125 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
14 | ringlz.4 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
15 | 1, 14, 3 | rngodir 37606 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴))) |
16 | 13, 15 | syldan 589 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴))) |
17 | 2 | adantr 479 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ GrpOp) |
18 | simpl 481 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝑅 ∈ RingOps) | |
19 | 1, 14, 3 | rngocl 37602 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) ∈ 𝑋) |
20 | 18, 11, 12, 19 | syl3anc 1368 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) ∈ 𝑋) |
21 | 3, 4 | grporid 30450 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → ((𝑍𝐻𝐴)𝐺𝑍) = (𝑍𝐻𝐴)) |
22 | 21 | eqcomd 2732 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍)) |
23 | 17, 20, 22 | syl2anc 582 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍)) |
24 | 9, 16, 23 | 3eqtr3d 2774 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍)) |
25 | 3 | grpolcan 30463 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝑍𝐻𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ (𝑍𝐻𝐴) ∈ 𝑋)) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍)) |
26 | 17, 20, 11, 20, 25 | syl13anc 1369 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍)) |
27 | 24, 26 | mpbid 231 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ran crn 5683 ‘cfv 6554 (class class class)co 7424 1st c1st 8001 2nd c2nd 8002 GrpOpcgr 30422 GIdcgi 30423 RingOpscrngo 37595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-1st 8003 df-2nd 8004 df-grpo 30426 df-gid 30427 df-ginv 30428 df-ablo 30478 df-rngo 37596 |
This theorem is referenced by: rngonegmn1l 37642 isdrngo3 37660 0idl 37726 keridl 37733 prnc 37768 |
Copyright terms: Public domain | W3C validator |