![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngolz | Structured version Visualization version GIF version |
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringlz.1 | ⊢ 𝑍 = (GId‘𝐺) |
ringlz.2 | ⊢ 𝑋 = ran 𝐺 |
ringlz.3 | ⊢ 𝐺 = (1st ‘𝑅) |
ringlz.4 | ⊢ 𝐻 = (2nd ‘𝑅) |
Ref | Expression |
---|---|
rngolz | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlz.3 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37897 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ringlz.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
4 | ringlz.1 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grpoidcl 30543 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
6 | 3, 4 | grpolid 30545 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
7 | 2, 5, 6 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍) |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
9 | 8 | oveq1d 7446 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = (𝑍𝐻𝐴)) |
10 | 1, 3, 4 | rngo0cl 37906 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
12 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
13 | 11, 11, 12 | 3jca 1127 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
14 | ringlz.4 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
15 | 1, 14, 3 | rngodir 37892 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴))) |
16 | 13, 15 | syldan 591 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴))) |
17 | 2 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ GrpOp) |
18 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝑅 ∈ RingOps) | |
19 | 1, 14, 3 | rngocl 37888 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) ∈ 𝑋) |
20 | 18, 11, 12, 19 | syl3anc 1370 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) ∈ 𝑋) |
21 | 3, 4 | grporid 30546 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → ((𝑍𝐻𝐴)𝐺𝑍) = (𝑍𝐻𝐴)) |
22 | 21 | eqcomd 2741 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍)) |
23 | 17, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍)) |
24 | 9, 16, 23 | 3eqtr3d 2783 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍)) |
25 | 3 | grpolcan 30559 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝑍𝐻𝐴) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ (𝑍𝐻𝐴) ∈ 𝑋)) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍)) |
26 | 17, 20, 11, 20, 25 | syl13anc 1371 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍)) |
27 | 24, 26 | mpbid 232 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ran crn 5690 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 2nd c2nd 8012 GrpOpcgr 30518 GIdcgi 30519 RingOpscrngo 37881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-1st 8013 df-2nd 8014 df-grpo 30522 df-gid 30523 df-ginv 30524 df-ablo 30574 df-rngo 37882 |
This theorem is referenced by: rngonegmn1l 37928 isdrngo3 37946 0idl 38012 keridl 38019 prnc 38054 |
Copyright terms: Public domain | W3C validator |