Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngolz Structured version   Visualization version   GIF version

Theorem rngolz 36077
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1 𝑍 = (GId‘𝐺)
ringlz.2 𝑋 = ran 𝐺
ringlz.3 𝐺 = (1st𝑅)
ringlz.4 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngolz ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = 𝑍)

Proof of Theorem rngolz
StepHypRef Expression
1 ringlz.3 . . . . . . 7 𝐺 = (1st𝑅)
21rngogrpo 36065 . . . . . 6 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringlz.2 . . . . . . 7 𝑋 = ran 𝐺
4 ringlz.1 . . . . . . 7 𝑍 = (GId‘𝐺)
53, 4grpoidcl 28873 . . . . . 6 (𝐺 ∈ GrpOp → 𝑍𝑋)
63, 4grpolid 28875 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑍𝑋) → (𝑍𝐺𝑍) = 𝑍)
72, 5, 6syl2anc2 585 . . . . 5 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
87adantr 481 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝑍) = 𝑍)
98oveq1d 7292 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = (𝑍𝐻𝐴))
101, 3, 4rngo0cl 36074 . . . . . 6 (𝑅 ∈ RingOps → 𝑍𝑋)
1110adantr 481 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑍𝑋)
12 simpr 485 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴𝑋)
1311, 11, 123jca 1127 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝑋𝑍𝑋𝐴𝑋))
14 ringlz.4 . . . . 5 𝐻 = (2nd𝑅)
151, 14, 3rngodir 36060 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑍𝑋𝑍𝑋𝐴𝑋)) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)))
1613, 15syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)))
172adantr 481 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐺 ∈ GrpOp)
18 simpl 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑅 ∈ RingOps)
191, 14, 3rngocl 36056 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑍𝑋𝐴𝑋) → (𝑍𝐻𝐴) ∈ 𝑋)
2018, 11, 12, 19syl3anc 1370 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) ∈ 𝑋)
213, 4grporid 28876 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → ((𝑍𝐻𝐴)𝐺𝑍) = (𝑍𝐻𝐴))
2221eqcomd 2744 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍))
2317, 20, 22syl2anc 584 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍))
249, 16, 233eqtr3d 2786 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍))
253grpolcan 28889 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝑍𝐻𝐴) ∈ 𝑋𝑍𝑋 ∧ (𝑍𝐻𝐴) ∈ 𝑋)) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍))
2617, 20, 11, 20, 25syl13anc 1371 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍))
2724, 26mpbid 231 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ran crn 5592  cfv 6435  (class class class)co 7277  1st c1st 7829  2nd c2nd 7830  GrpOpcgr 28848  GIdcgi 28849  RingOpscrngo 36049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-1st 7831  df-2nd 7832  df-grpo 28852  df-gid 28853  df-ginv 28854  df-ablo 28904  df-rngo 36050
This theorem is referenced by:  rngonegmn1l  36096  isdrngo3  36114  0idl  36180  keridl  36187  prnc  36222
  Copyright terms: Public domain W3C validator