Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngolz Structured version   Visualization version   GIF version

Theorem rngolz 37916
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1 𝑍 = (GId‘𝐺)
ringlz.2 𝑋 = ran 𝐺
ringlz.3 𝐺 = (1st𝑅)
ringlz.4 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngolz ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = 𝑍)

Proof of Theorem rngolz
StepHypRef Expression
1 ringlz.3 . . . . . . 7 𝐺 = (1st𝑅)
21rngogrpo 37904 . . . . . 6 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringlz.2 . . . . . . 7 𝑋 = ran 𝐺
4 ringlz.1 . . . . . . 7 𝑍 = (GId‘𝐺)
53, 4grpoidcl 30443 . . . . . 6 (𝐺 ∈ GrpOp → 𝑍𝑋)
63, 4grpolid 30445 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑍𝑋) → (𝑍𝐺𝑍) = 𝑍)
72, 5, 6syl2anc2 585 . . . . 5 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
87adantr 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝑍) = 𝑍)
98oveq1d 7402 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = (𝑍𝐻𝐴))
101, 3, 4rngo0cl 37913 . . . . . 6 (𝑅 ∈ RingOps → 𝑍𝑋)
1110adantr 480 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑍𝑋)
12 simpr 484 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴𝑋)
1311, 11, 123jca 1128 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝑋𝑍𝑋𝐴𝑋))
14 ringlz.4 . . . . 5 𝐻 = (2nd𝑅)
151, 14, 3rngodir 37899 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑍𝑋𝑍𝑋𝐴𝑋)) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)))
1613, 15syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)))
172adantr 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐺 ∈ GrpOp)
18 simpl 482 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑅 ∈ RingOps)
191, 14, 3rngocl 37895 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑍𝑋𝐴𝑋) → (𝑍𝐻𝐴) ∈ 𝑋)
2018, 11, 12, 19syl3anc 1373 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) ∈ 𝑋)
213, 4grporid 30446 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → ((𝑍𝐻𝐴)𝐺𝑍) = (𝑍𝐻𝐴))
2221eqcomd 2735 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍))
2317, 20, 22syl2anc 584 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍))
249, 16, 233eqtr3d 2772 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍))
253grpolcan 30459 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝑍𝐻𝐴) ∈ 𝑋𝑍𝑋 ∧ (𝑍𝐻𝐴) ∈ 𝑋)) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍))
2617, 20, 11, 20, 25syl13anc 1374 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍))
2724, 26mpbid 232 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  GrpOpcgr 30418  GIdcgi 30419  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-rngo 37889
This theorem is referenced by:  rngonegmn1l  37935  isdrngo3  37953  0idl  38019  keridl  38026  prnc  38061
  Copyright terms: Public domain W3C validator