![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo0rid | Structured version Visualization version GIF version |
Description: The additive identity of a ring is a right identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring0cl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ring0cl.2 | ⊢ 𝑋 = ran 𝐺 |
ring0cl.3 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
rngo0rid | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring0cl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 34246 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ring0cl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | ring0cl.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grporid 27923 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
6 | 2, 5 | sylan 575 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ran crn 5347 ‘cfv 6127 (class class class)co 6910 1st c1st 7431 GrpOpcgr 27895 GIdcgi 27896 RingOpscrngo 34230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fo 6133 df-fv 6135 df-riota 6871 df-ov 6913 df-1st 7433 df-2nd 7434 df-grpo 27899 df-gid 27900 df-ablo 27951 df-rngo 34231 |
This theorem is referenced by: 0idl 34361 |
Copyright terms: Public domain | W3C validator |