Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo0rid Structured version   Visualization version   GIF version

Theorem rngo0rid 36086
Description: The additive identity of a ring is a right identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring0cl.1 𝐺 = (1st𝑅)
ring0cl.2 𝑋 = ran 𝐺
ring0cl.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngo0rid ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)

Proof of Theorem rngo0rid
StepHypRef Expression
1 ring0cl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 36076 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ring0cl.2 . . 3 𝑋 = ran 𝐺
4 ring0cl.3 . . 3 𝑍 = (GId‘𝐺)
53, 4grporid 28887 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
62, 5sylan 580 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ran crn 5585  cfv 6426  (class class class)co 7267  1st c1st 7818  GrpOpcgr 28859  GIdcgi 28860  RingOpscrngo 36060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-fo 6432  df-fv 6434  df-riota 7224  df-ov 7270  df-1st 7820  df-2nd 7821  df-grpo 28863  df-gid 28864  df-ablo 28915  df-rngo 36061
This theorem is referenced by:  0idl  36191
  Copyright terms: Public domain W3C validator