Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhf1 Structured version   Visualization version   GIF version

Theorem mvhf1 32002
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhf.v 𝑉 = (mVR‘𝑇)
mvhf.e 𝐸 = (mEx‘𝑇)
mvhf.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhf1 (𝑇 ∈ mFS → 𝐻:𝑉1-1𝐸)

Proof of Theorem mvhf1
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvhf.v . . 3 𝑉 = (mVR‘𝑇)
2 mvhf.e . . 3 𝐸 = (mEx‘𝑇)
3 mvhf.h . . 3 𝐻 = (mVH‘𝑇)
41, 2, 3mvhf 32001 . 2 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
5 eqid 2825 . . . . . . 7 (mType‘𝑇) = (mType‘𝑇)
61, 5, 3mvhval 31977 . . . . . 6 (𝑣𝑉 → (𝐻𝑣) = ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩)
71, 5, 3mvhval 31977 . . . . . 6 (𝑤𝑉 → (𝐻𝑤) = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩)
86, 7eqeqan12d 2841 . . . . 5 ((𝑣𝑉𝑤𝑉) → ((𝐻𝑣) = (𝐻𝑤) ↔ ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩))
98adantl 475 . . . 4 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → ((𝐻𝑣) = (𝐻𝑤) ↔ ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩))
10 fvex 6446 . . . . . . 7 ((mType‘𝑇)‘𝑣) ∈ V
11 s1cli 13665 . . . . . . . 8 ⟨“𝑣”⟩ ∈ Word V
1211elexi 3430 . . . . . . 7 ⟨“𝑣”⟩ ∈ V
1310, 12opth 5165 . . . . . 6 (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ ↔ (((mType‘𝑇)‘𝑣) = ((mType‘𝑇)‘𝑤) ∧ ⟨“𝑣”⟩ = ⟨“𝑤”⟩))
1413simprbi 492 . . . . 5 (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ → ⟨“𝑣”⟩ = ⟨“𝑤”⟩)
15 s111 13675 . . . . . 6 ((𝑣𝑉𝑤𝑉) → (⟨“𝑣”⟩ = ⟨“𝑤”⟩ ↔ 𝑣 = 𝑤))
1615adantl 475 . . . . 5 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → (⟨“𝑣”⟩ = ⟨“𝑤”⟩ ↔ 𝑣 = 𝑤))
1714, 16syl5ib 236 . . . 4 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ → 𝑣 = 𝑤))
189, 17sylbid 232 . . 3 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤))
1918ralrimivva 3180 . 2 (𝑇 ∈ mFS → ∀𝑣𝑉𝑤𝑉 ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤))
20 dff13 6767 . 2 (𝐻:𝑉1-1𝐸 ↔ (𝐻:𝑉𝐸 ∧ ∀𝑣𝑉𝑤𝑉 ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤)))
214, 19, 20sylanbrc 580 1 (𝑇 ∈ mFS → 𝐻:𝑉1-1𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wral 3117  Vcvv 3414  cop 4403  wf 6119  1-1wf1 6120  cfv 6123  Word cword 13574  ⟨“cs1 13655  mVRcmvar 31904  mTypecmty 31905  mExcmex 31910  mVHcmvh 31915  mFScmfs 31919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-s1 13656  df-mrex 31929  df-mex 31930  df-mvh 31935  df-mfs 31939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator