Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhf1 | Structured version Visualization version GIF version |
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhf.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvhf.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvhf.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
mvhf1 | ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvhf.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | mvhf.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mvhf.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
4 | 1, 2, 3 | mvhf 33520 | . 2 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
5 | eqid 2738 | . . . . . . 7 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
6 | 1, 5, 3 | mvhval 33496 | . . . . . 6 ⊢ (𝑣 ∈ 𝑉 → (𝐻‘𝑣) = 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉) |
7 | 1, 5, 3 | mvhval 33496 | . . . . . 6 ⊢ (𝑤 ∈ 𝑉 → (𝐻‘𝑤) = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉) |
8 | 6, 7 | eqeqan12d 2752 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
9 | 8 | adantl 482 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
10 | fvex 6787 | . . . . . . 7 ⊢ ((mType‘𝑇)‘𝑣) ∈ V | |
11 | s1cli 14310 | . . . . . . . 8 ⊢ 〈“𝑣”〉 ∈ Word V | |
12 | 11 | elexi 3451 | . . . . . . 7 ⊢ 〈“𝑣”〉 ∈ V |
13 | 10, 12 | opth 5391 | . . . . . 6 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 ↔ (((mType‘𝑇)‘𝑣) = ((mType‘𝑇)‘𝑤) ∧ 〈“𝑣”〉 = 〈“𝑤”〉)) |
14 | 13 | simprbi 497 | . . . . 5 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 〈“𝑣”〉 = 〈“𝑤”〉) |
15 | s111 14320 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) | |
16 | 15 | adantl 482 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) |
17 | 14, 16 | syl5ib 243 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 𝑣 = 𝑤)) |
18 | 9, 17 | sylbid 239 | . . 3 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
19 | 18 | ralrimivva 3123 | . 2 ⊢ (𝑇 ∈ mFS → ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
20 | dff13 7128 | . 2 ⊢ (𝐻:𝑉–1-1→𝐸 ↔ (𝐻:𝑉⟶𝐸 ∧ ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤))) | |
21 | 4, 19, 20 | sylanbrc 583 | 1 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 〈cop 4567 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 Word cword 14217 〈“cs1 14300 mVRcmvar 33423 mTypecmty 33424 mExcmex 33429 mVHcmvh 33434 mFScmfs 33438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-s1 14301 df-mrex 33448 df-mex 33449 df-mvh 33454 df-mfs 33458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |