| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhf1 | Structured version Visualization version GIF version | ||
| Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvhf.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvhf.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mvhf.h | ⊢ 𝐻 = (mVH‘𝑇) |
| Ref | Expression |
|---|---|
| mvhf1 | ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvhf.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | mvhf.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
| 3 | mvhf.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
| 4 | 1, 2, 3 | mvhf 35602 | . 2 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
| 6 | 1, 5, 3 | mvhval 35578 | . . . . . 6 ⊢ (𝑣 ∈ 𝑉 → (𝐻‘𝑣) = 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉) |
| 7 | 1, 5, 3 | mvhval 35578 | . . . . . 6 ⊢ (𝑤 ∈ 𝑉 → (𝐻‘𝑤) = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉) |
| 8 | 6, 7 | eqeqan12d 2745 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
| 10 | fvex 6835 | . . . . . . 7 ⊢ ((mType‘𝑇)‘𝑣) ∈ V | |
| 11 | s1cli 14513 | . . . . . . . 8 ⊢ 〈“𝑣”〉 ∈ Word V | |
| 12 | 11 | elexi 3459 | . . . . . . 7 ⊢ 〈“𝑣”〉 ∈ V |
| 13 | 10, 12 | opth 5414 | . . . . . 6 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 ↔ (((mType‘𝑇)‘𝑣) = ((mType‘𝑇)‘𝑤) ∧ 〈“𝑣”〉 = 〈“𝑤”〉)) |
| 14 | 13 | simprbi 496 | . . . . 5 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 〈“𝑣”〉 = 〈“𝑤”〉) |
| 15 | s111 14523 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) | |
| 16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) |
| 17 | 14, 16 | imbitrid 244 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 𝑣 = 𝑤)) |
| 18 | 9, 17 | sylbid 240 | . . 3 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
| 19 | 18 | ralrimivva 3175 | . 2 ⊢ (𝑇 ∈ mFS → ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
| 20 | dff13 7188 | . 2 ⊢ (𝐻:𝑉–1-1→𝐸 ↔ (𝐻:𝑉⟶𝐸 ∧ ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤))) | |
| 21 | 4, 19, 20 | sylanbrc 583 | 1 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 〈cop 4579 ⟶wf 6477 –1-1→wf1 6478 ‘cfv 6481 Word cword 14420 〈“cs1 14503 mVRcmvar 35505 mTypecmty 35506 mExcmex 35511 mVHcmvh 35516 mFScmfs 35520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-s1 14504 df-mrex 35530 df-mex 35531 df-mvh 35536 df-mfs 35540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |