| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhf1 | Structured version Visualization version GIF version | ||
| Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvhf.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvhf.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mvhf.h | ⊢ 𝐻 = (mVH‘𝑇) |
| Ref | Expression |
|---|---|
| mvhf1 | ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvhf.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | mvhf.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
| 3 | mvhf.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
| 4 | 1, 2, 3 | mvhf 35580 | . 2 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
| 5 | eqid 2735 | . . . . . . 7 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
| 6 | 1, 5, 3 | mvhval 35556 | . . . . . 6 ⊢ (𝑣 ∈ 𝑉 → (𝐻‘𝑣) = 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉) |
| 7 | 1, 5, 3 | mvhval 35556 | . . . . . 6 ⊢ (𝑤 ∈ 𝑉 → (𝐻‘𝑤) = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉) |
| 8 | 6, 7 | eqeqan12d 2749 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
| 10 | fvex 6889 | . . . . . . 7 ⊢ ((mType‘𝑇)‘𝑣) ∈ V | |
| 11 | s1cli 14623 | . . . . . . . 8 ⊢ 〈“𝑣”〉 ∈ Word V | |
| 12 | 11 | elexi 3482 | . . . . . . 7 ⊢ 〈“𝑣”〉 ∈ V |
| 13 | 10, 12 | opth 5451 | . . . . . 6 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 ↔ (((mType‘𝑇)‘𝑣) = ((mType‘𝑇)‘𝑤) ∧ 〈“𝑣”〉 = 〈“𝑤”〉)) |
| 14 | 13 | simprbi 496 | . . . . 5 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 〈“𝑣”〉 = 〈“𝑤”〉) |
| 15 | s111 14633 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) | |
| 16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) |
| 17 | 14, 16 | imbitrid 244 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 𝑣 = 𝑤)) |
| 18 | 9, 17 | sylbid 240 | . . 3 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
| 19 | 18 | ralrimivva 3187 | . 2 ⊢ (𝑇 ∈ mFS → ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
| 20 | dff13 7247 | . 2 ⊢ (𝐻:𝑉–1-1→𝐸 ↔ (𝐻:𝑉⟶𝐸 ∧ ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤))) | |
| 21 | 4, 19, 20 | sylanbrc 583 | 1 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 〈cop 4607 ⟶wf 6527 –1-1→wf1 6528 ‘cfv 6531 Word cword 14531 〈“cs1 14613 mVRcmvar 35483 mTypecmty 35484 mExcmex 35489 mVHcmvh 35494 mFScmfs 35498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-s1 14614 df-mrex 35508 df-mex 35509 df-mvh 35514 df-mfs 35518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |