Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhf1 Structured version   Visualization version   GIF version

Theorem mvhf1 35527
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhf.v 𝑉 = (mVR‘𝑇)
mvhf.e 𝐸 = (mEx‘𝑇)
mvhf.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhf1 (𝑇 ∈ mFS → 𝐻:𝑉1-1𝐸)

Proof of Theorem mvhf1
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvhf.v . . 3 𝑉 = (mVR‘𝑇)
2 mvhf.e . . 3 𝐸 = (mEx‘𝑇)
3 mvhf.h . . 3 𝐻 = (mVH‘𝑇)
41, 2, 3mvhf 35526 . 2 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
5 eqid 2740 . . . . . . 7 (mType‘𝑇) = (mType‘𝑇)
61, 5, 3mvhval 35502 . . . . . 6 (𝑣𝑉 → (𝐻𝑣) = ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩)
71, 5, 3mvhval 35502 . . . . . 6 (𝑤𝑉 → (𝐻𝑤) = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩)
86, 7eqeqan12d 2754 . . . . 5 ((𝑣𝑉𝑤𝑉) → ((𝐻𝑣) = (𝐻𝑤) ↔ ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩))
98adantl 481 . . . 4 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → ((𝐻𝑣) = (𝐻𝑤) ↔ ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩))
10 fvex 6933 . . . . . . 7 ((mType‘𝑇)‘𝑣) ∈ V
11 s1cli 14653 . . . . . . . 8 ⟨“𝑣”⟩ ∈ Word V
1211elexi 3511 . . . . . . 7 ⟨“𝑣”⟩ ∈ V
1310, 12opth 5496 . . . . . 6 (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ ↔ (((mType‘𝑇)‘𝑣) = ((mType‘𝑇)‘𝑤) ∧ ⟨“𝑣”⟩ = ⟨“𝑤”⟩))
1413simprbi 496 . . . . 5 (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ → ⟨“𝑣”⟩ = ⟨“𝑤”⟩)
15 s111 14663 . . . . . 6 ((𝑣𝑉𝑤𝑉) → (⟨“𝑣”⟩ = ⟨“𝑤”⟩ ↔ 𝑣 = 𝑤))
1615adantl 481 . . . . 5 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → (⟨“𝑣”⟩ = ⟨“𝑤”⟩ ↔ 𝑣 = 𝑤))
1714, 16imbitrid 244 . . . 4 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ → 𝑣 = 𝑤))
189, 17sylbid 240 . . 3 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤))
1918ralrimivva 3208 . 2 (𝑇 ∈ mFS → ∀𝑣𝑉𝑤𝑉 ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤))
20 dff13 7292 . 2 (𝐻:𝑉1-1𝐸 ↔ (𝐻:𝑉𝐸 ∧ ∀𝑣𝑉𝑤𝑉 ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤)))
214, 19, 20sylanbrc 582 1 (𝑇 ∈ mFS → 𝐻:𝑉1-1𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cop 4654  wf 6569  1-1wf1 6570  cfv 6573  Word cword 14562  ⟨“cs1 14643  mVRcmvar 35429  mTypecmty 35430  mExcmex 35435  mVHcmvh 35440  mFScmfs 35444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-s1 14644  df-mrex 35454  df-mex 35455  df-mvh 35460  df-mfs 35464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator