Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhf1 Structured version   Visualization version   GIF version

Theorem mvhf1 35543
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhf.v 𝑉 = (mVR‘𝑇)
mvhf.e 𝐸 = (mEx‘𝑇)
mvhf.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhf1 (𝑇 ∈ mFS → 𝐻:𝑉1-1𝐸)

Proof of Theorem mvhf1
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvhf.v . . 3 𝑉 = (mVR‘𝑇)
2 mvhf.e . . 3 𝐸 = (mEx‘𝑇)
3 mvhf.h . . 3 𝐻 = (mVH‘𝑇)
41, 2, 3mvhf 35542 . 2 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
5 eqid 2734 . . . . . . 7 (mType‘𝑇) = (mType‘𝑇)
61, 5, 3mvhval 35518 . . . . . 6 (𝑣𝑉 → (𝐻𝑣) = ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩)
71, 5, 3mvhval 35518 . . . . . 6 (𝑤𝑉 → (𝐻𝑤) = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩)
86, 7eqeqan12d 2748 . . . . 5 ((𝑣𝑉𝑤𝑉) → ((𝐻𝑣) = (𝐻𝑤) ↔ ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩))
98adantl 481 . . . 4 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → ((𝐻𝑣) = (𝐻𝑤) ↔ ⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩))
10 fvex 6919 . . . . . . 7 ((mType‘𝑇)‘𝑣) ∈ V
11 s1cli 14639 . . . . . . . 8 ⟨“𝑣”⟩ ∈ Word V
1211elexi 3500 . . . . . . 7 ⟨“𝑣”⟩ ∈ V
1310, 12opth 5486 . . . . . 6 (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ ↔ (((mType‘𝑇)‘𝑣) = ((mType‘𝑇)‘𝑤) ∧ ⟨“𝑣”⟩ = ⟨“𝑤”⟩))
1413simprbi 496 . . . . 5 (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ → ⟨“𝑣”⟩ = ⟨“𝑤”⟩)
15 s111 14649 . . . . . 6 ((𝑣𝑉𝑤𝑉) → (⟨“𝑣”⟩ = ⟨“𝑤”⟩ ↔ 𝑣 = 𝑤))
1615adantl 481 . . . . 5 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → (⟨“𝑣”⟩ = ⟨“𝑤”⟩ ↔ 𝑣 = 𝑤))
1714, 16imbitrid 244 . . . 4 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → (⟨((mType‘𝑇)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨((mType‘𝑇)‘𝑤), ⟨“𝑤”⟩⟩ → 𝑣 = 𝑤))
189, 17sylbid 240 . . 3 ((𝑇 ∈ mFS ∧ (𝑣𝑉𝑤𝑉)) → ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤))
1918ralrimivva 3199 . 2 (𝑇 ∈ mFS → ∀𝑣𝑉𝑤𝑉 ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤))
20 dff13 7274 . 2 (𝐻:𝑉1-1𝐸 ↔ (𝐻:𝑉𝐸 ∧ ∀𝑣𝑉𝑤𝑉 ((𝐻𝑣) = (𝐻𝑤) → 𝑣 = 𝑤)))
214, 19, 20sylanbrc 583 1 (𝑇 ∈ mFS → 𝐻:𝑉1-1𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  cop 4636  wf 6558  1-1wf1 6559  cfv 6562  Word cword 14548  ⟨“cs1 14629  mVRcmvar 35445  mTypecmty 35446  mExcmex 35451  mVHcmvh 35456  mFScmfs 35460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-s1 14630  df-mrex 35470  df-mex 35471  df-mvh 35476  df-mfs 35480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator