Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhf1 | Structured version Visualization version GIF version |
Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhf.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvhf.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvhf.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
mvhf1 | ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvhf.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | mvhf.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mvhf.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
4 | 1, 2, 3 | mvhf 33817 | . 2 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) |
5 | eqid 2737 | . . . . . . 7 ⊢ (mType‘𝑇) = (mType‘𝑇) | |
6 | 1, 5, 3 | mvhval 33793 | . . . . . 6 ⊢ (𝑣 ∈ 𝑉 → (𝐻‘𝑣) = 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉) |
7 | 1, 5, 3 | mvhval 33793 | . . . . . 6 ⊢ (𝑤 ∈ 𝑉 → (𝐻‘𝑤) = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉) |
8 | 6, 7 | eqeqan12d 2751 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
9 | 8 | adantl 483 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) ↔ 〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉)) |
10 | fvex 6843 | . . . . . . 7 ⊢ ((mType‘𝑇)‘𝑣) ∈ V | |
11 | s1cli 14413 | . . . . . . . 8 ⊢ 〈“𝑣”〉 ∈ Word V | |
12 | 11 | elexi 3461 | . . . . . . 7 ⊢ 〈“𝑣”〉 ∈ V |
13 | 10, 12 | opth 5426 | . . . . . 6 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 ↔ (((mType‘𝑇)‘𝑣) = ((mType‘𝑇)‘𝑤) ∧ 〈“𝑣”〉 = 〈“𝑤”〉)) |
14 | 13 | simprbi 498 | . . . . 5 ⊢ (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 〈“𝑣”〉 = 〈“𝑤”〉) |
15 | s111 14423 | . . . . . 6 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) | |
16 | 15 | adantl 483 | . . . . 5 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈“𝑣”〉 = 〈“𝑤”〉 ↔ 𝑣 = 𝑤)) |
17 | 14, 16 | syl5ib 244 | . . . 4 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → (〈((mType‘𝑇)‘𝑣), 〈“𝑣”〉〉 = 〈((mType‘𝑇)‘𝑤), 〈“𝑤”〉〉 → 𝑣 = 𝑤)) |
18 | 9, 17 | sylbid 239 | . . 3 ⊢ ((𝑇 ∈ mFS ∧ (𝑣 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉)) → ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
19 | 18 | ralrimivva 3194 | . 2 ⊢ (𝑇 ∈ mFS → ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤)) |
20 | dff13 7189 | . 2 ⊢ (𝐻:𝑉–1-1→𝐸 ↔ (𝐻:𝑉⟶𝐸 ∧ ∀𝑣 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((𝐻‘𝑣) = (𝐻‘𝑤) → 𝑣 = 𝑤))) | |
21 | 4, 19, 20 | sylanbrc 584 | 1 ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 Vcvv 3442 〈cop 4584 ⟶wf 6480 –1-1→wf1 6481 ‘cfv 6484 Word cword 14322 〈“cs1 14403 mVRcmvar 33720 mTypecmty 33721 mExcmex 33726 mVHcmvh 33731 mFScmfs 33735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-fzo 13489 df-hash 14151 df-word 14323 df-s1 14404 df-mrex 33745 df-mex 33746 df-mvh 33751 df-mfs 33755 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |