MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2swrd2eqwrdeq Structured version   Visualization version   GIF version

Theorem 2swrd2eqwrdeq 14860
Description: Two words of length at least two are equal if and only if they have the same prefix and the same two single symbols suffix. (Contributed by AV, 24-Sep-2018.) (Revised by AV, 12-Oct-2022.)
Assertion
Ref Expression
2swrd2eqwrdeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))

Proof of Theorem 2swrd2eqwrdeq
StepHypRef Expression
1 lencl 14440 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2 1z 12505 . . . . . . . . . 10 1 ∈ ℤ
3 nn0z 12496 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
4 zltp1le 12525 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
52, 3, 4sylancr 587 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
6 1p1e2 12248 . . . . . . . . . . . 12 (1 + 1) = 2
76a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
87breq1d 5102 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
98biimpd 229 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
105, 9sylbid 240 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1110imp 406 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
12 2nn0 12401 . . . . . . . 8 2 ∈ ℕ0
13 simpl 482 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
14 nn0sub 12434 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1512, 13, 14sylancr 587 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1611, 15mpbid 232 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
173adantr 480 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
18 0red 11118 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 0 ∈ ℝ)
19 1red 11116 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℝ)
20 nn0re 12393 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
2118, 19, 203jca 1128 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
22 0lt1 11642 . . . . . . . . 9 0 < 1
23 lttr 11192 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2423expd 415 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2521, 22, 24mpisyl 21 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
2625imp 406 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊))
27 elnnz 12481 . . . . . . 7 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2817, 26, 27sylanbrc 583 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
29 2rp 12898 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℝ+)
3120, 30ltsubrpd 12969 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 2) < (♯‘𝑊))
3231adantr 480 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) < (♯‘𝑊))
33 elfzo0 13603 . . . . . 6 (((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)) ↔ (((♯‘𝑊) − 2) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ ((♯‘𝑊) − 2) < (♯‘𝑊)))
3416, 28, 32, 33syl3anbrc 1344 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
351, 34sylan 580 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
36353adant2 1131 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
37 pfxsuffeqwrdeq 14604 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)))))
3836, 37syld3an3 1411 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)))))
39 swrd2lsw 14859 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
40393adant2 1131 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
4140adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
42 breq2 5096 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → (1 < (♯‘𝑊) ↔ 1 < (♯‘𝑈)))
43423anbi3d 1444 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈))))
44 swrd2lsw 14859 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
45443adant1 1130 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
4643, 45biimtrdi 253 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
4746impcom 407 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
48 oveq1 7356 . . . . . . . . . . . 12 ((♯‘𝑊) = (♯‘𝑈) → ((♯‘𝑊) − 2) = ((♯‘𝑈) − 2))
49 id 22 . . . . . . . . . . . 12 ((♯‘𝑊) = (♯‘𝑈) → (♯‘𝑊) = (♯‘𝑈))
5048, 49opeq12d 4832 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩)
5150oveq2d 7365 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩))
5251eqeq1d 2731 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
5352adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
5447, 53mpbird 257 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
5541, 54eqeq12d 2745 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) ↔ ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
56 fvexd 6837 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊‘((♯‘𝑊) − 2)) ∈ V)
57 fvexd 6837 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ V)
58 fvexd 6837 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈‘((♯‘𝑈) − 2)) ∈ V)
59 fvexd 6837 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑈) ∈ V)
60 s2eq2s1eq 14843 . . . . . . 7 ((((𝑊‘((♯‘𝑊) − 2)) ∈ V ∧ (lastS‘𝑊) ∈ V) ∧ ((𝑈‘((♯‘𝑈) − 2)) ∈ V ∧ (lastS‘𝑈) ∈ V)) → (⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩)))
6156, 57, 58, 59, 60syl22anc 838 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩)))
62 fvex 6835 . . . . . . . . 9 (𝑊‘((♯‘𝑊) − 2)) ∈ V
63 s111 14522 . . . . . . . . 9 (((𝑊‘((♯‘𝑊) − 2)) ∈ V ∧ (𝑈‘((♯‘𝑈) − 2)) ∈ V) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2))))
6462, 58, 63sylancr 587 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2))))
65 fvoveq1 7372 . . . . . . . . . . 11 ((♯‘𝑈) = (♯‘𝑊) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6665eqcoms 2737 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6766adantl 481 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6867eqeq2d 2740 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2)) ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2))))
6964, 68bitrd 279 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2))))
70 fvex 6835 . . . . . . . 8 (lastS‘𝑊) ∈ V
71 s111 14522 . . . . . . . 8 (((lastS‘𝑊) ∈ V ∧ (lastS‘𝑈) ∈ V) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
7270, 59, 71sylancr 587 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
7369, 72anbi12d 632 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩) ↔ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7455, 61, 733bitrd 305 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) ↔ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7574anbi2d 630 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)) ↔ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
76 3anass 1094 . . . 4 (((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)) ↔ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7775, 76bitr4di 289 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)) ↔ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7877pm5.32da 579 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
7938, 78bitrd 279 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347  cn 12128  2c2 12183  0cn0 12384  cz 12471  +crp 12893  ..^cfzo 13557  chash 14237  Word cword 14420  lastSclsw 14469  ⟨“cs1 14502   substr csubstr 14547   prefix cpfx 14577  ⟨“cs2 14748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-s2 14755
This theorem is referenced by:  numclwwlk1lem2f1  30301
  Copyright terms: Public domain W3C validator