MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2swrd2eqwrdeq Structured version   Visualization version   GIF version

Theorem 2swrd2eqwrdeq 14666
Description: Two words of length at least two are equal if and only if they have the same prefix and the same two single symbols suffix. (Contributed by AV, 24-Sep-2018.) (Revised by AV, 12-Oct-2022.)
Assertion
Ref Expression
2swrd2eqwrdeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))

Proof of Theorem 2swrd2eqwrdeq
StepHypRef Expression
1 lencl 14236 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2 1z 12350 . . . . . . . . . 10 1 ∈ ℤ
3 nn0z 12343 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
4 zltp1le 12370 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
52, 3, 4sylancr 587 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) ↔ (1 + 1) ≤ (♯‘𝑊)))
6 1p1e2 12098 . . . . . . . . . . . 12 (1 + 1) = 2
76a1i 11 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
87breq1d 5084 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) ↔ 2 ≤ (♯‘𝑊)))
98biimpd 228 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
105, 9sylbid 239 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 2 ≤ (♯‘𝑊)))
1110imp 407 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
12 2nn0 12250 . . . . . . . 8 2 ∈ ℕ0
13 simpl 483 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
14 nn0sub 12283 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1512, 13, 14sylancr 587 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (2 ≤ (♯‘𝑊) ↔ ((♯‘𝑊) − 2) ∈ ℕ0))
1611, 15mpbid 231 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ ℕ0)
173adantr 481 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
18 0red 10978 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 0 ∈ ℝ)
19 1red 10976 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 1 ∈ ℝ)
20 nn0re 12242 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
2118, 19, 203jca 1127 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
22 0lt1 11497 . . . . . . . . 9 0 < 1
23 lttr 11051 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊)))
2423expd 416 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊))))
2521, 22, 24mpisyl 21 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → (1 < (♯‘𝑊) → 0 < (♯‘𝑊)))
2625imp 407 . . . . . . 7 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → 0 < (♯‘𝑊))
27 elnnz 12329 . . . . . . 7 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
2817, 26, 27sylanbrc 583 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
29 2rp 12735 . . . . . . . . 9 2 ∈ ℝ+
3029a1i 11 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → 2 ∈ ℝ+)
3120, 30ltsubrpd 12804 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 2) < (♯‘𝑊))
3231adantr 481 . . . . . 6 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) < (♯‘𝑊))
33 elfzo0 13428 . . . . . 6 (((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)) ↔ (((♯‘𝑊) − 2) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ ((♯‘𝑊) − 2) < (♯‘𝑊)))
3416, 28, 32, 33syl3anbrc 1342 . . . . 5 (((♯‘𝑊) ∈ ℕ0 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
351, 34sylan 580 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
36353adant2 1130 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊)))
37 pfxsuffeqwrdeq 14411 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 2) ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)))))
3836, 37syld3an3 1408 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)))))
39 swrd2lsw 14665 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
40393adant2 1130 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
4140adantr 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩)
42 breq2 5078 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → (1 < (♯‘𝑊) ↔ 1 < (♯‘𝑈)))
43423anbi3d 1441 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈))))
44 swrd2lsw 14665 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
45443adant1 1129 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
4643, 45syl6bi 252 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
4746impcom 408 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
48 oveq1 7282 . . . . . . . . . . . 12 ((♯‘𝑊) = (♯‘𝑈) → ((♯‘𝑊) − 2) = ((♯‘𝑈) − 2))
49 id 22 . . . . . . . . . . . 12 ((♯‘𝑊) = (♯‘𝑈) → (♯‘𝑊) = (♯‘𝑈))
5048, 49opeq12d 4812 . . . . . . . . . . 11 ((♯‘𝑊) = (♯‘𝑈) → ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩ = ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩)
5150oveq2d 7291 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩))
5251eqeq1d 2740 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑈) → ((𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
5352adantl 482 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (𝑈 substr ⟨((♯‘𝑈) − 2), (♯‘𝑈)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
5447, 53mpbird 256 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩)
5541, 54eqeq12d 2754 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) ↔ ⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩))
56 fvexd 6789 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑊‘((♯‘𝑊) − 2)) ∈ V)
57 fvexd 6789 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑊) ∈ V)
58 fvexd 6789 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈‘((♯‘𝑈) − 2)) ∈ V)
59 fvexd 6789 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (lastS‘𝑈) ∈ V)
60 s2eq2s1eq 14649 . . . . . . 7 ((((𝑊‘((♯‘𝑊) − 2)) ∈ V ∧ (lastS‘𝑊) ∈ V) ∧ ((𝑈‘((♯‘𝑈) − 2)) ∈ V ∧ (lastS‘𝑈) ∈ V)) → (⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩)))
6156, 57, 58, 59, 60syl22anc 836 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))(lastS‘𝑊)”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))(lastS‘𝑈)”⟩ ↔ (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩)))
62 fvex 6787 . . . . . . . . 9 (𝑊‘((♯‘𝑊) − 2)) ∈ V
63 s111 14320 . . . . . . . . 9 (((𝑊‘((♯‘𝑊) − 2)) ∈ V ∧ (𝑈‘((♯‘𝑈) − 2)) ∈ V) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2))))
6462, 58, 63sylancr 587 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2))))
65 fvoveq1 7298 . . . . . . . . . . 11 ((♯‘𝑈) = (♯‘𝑊) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6665eqcoms 2746 . . . . . . . . . 10 ((♯‘𝑊) = (♯‘𝑈) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6766adantl 482 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (𝑈‘((♯‘𝑈) − 2)) = (𝑈‘((♯‘𝑊) − 2)))
6867eqeq2d 2749 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑈) − 2)) ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2))))
6964, 68bitrd 278 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ↔ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2))))
70 fvex 6787 . . . . . . . 8 (lastS‘𝑊) ∈ V
71 s111 14320 . . . . . . . 8 (((lastS‘𝑊) ∈ V ∧ (lastS‘𝑈) ∈ V) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
7270, 59, 71sylancr 587 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩ ↔ (lastS‘𝑊) = (lastS‘𝑈)))
7369, 72anbi12d 631 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((⟨“(𝑊‘((♯‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((♯‘𝑈) − 2))”⟩ ∧ ⟨“(lastS‘𝑊)”⟩ = ⟨“(lastS‘𝑈)”⟩) ↔ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7455, 61, 733bitrd 305 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → ((𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) ↔ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7574anbi2d 629 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)) ↔ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
76 3anass 1094 . . . 4 (((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)) ↔ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ ((𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7775, 76bitr4di 289 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) ∧ (♯‘𝑊) = (♯‘𝑈)) → (((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩)) ↔ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈))))
7877pm5.32da 579 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩) = (𝑈 substr ⟨((♯‘𝑊) − 2), (♯‘𝑊)⟩))) ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
7938, 78bitrd 278 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 2)) = (𝑈 prefix ((♯‘𝑊) − 2)) ∧ (𝑊‘((♯‘𝑊) − 2)) = (𝑈‘((♯‘𝑊) − 2)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  +crp 12730  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265  ⟨“cs1 14300   substr csubstr 14353   prefix cpfx 14383  ⟨“cs2 14554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-s2 14561
This theorem is referenced by:  numclwwlk1lem2f1  28721
  Copyright terms: Public domain W3C validator