| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2eq2seq | Structured version Visualization version GIF version | ||
| Description: Two length 2 words are equal iff the corresponding symbols are equal. (Contributed by AV, 20-Oct-2018.) |
| Ref | Expression |
|---|---|
| s2eq2seq | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eq2s1eq 14909 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (〈“𝐴”〉 = 〈“𝐶”〉 ∧ 〈“𝐵”〉 = 〈“𝐷”〉))) | |
| 2 | s111 14587 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (〈“𝐴”〉 = 〈“𝐶”〉 ↔ 𝐴 = 𝐶)) | |
| 3 | 2 | ad2ant2r 747 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴”〉 = 〈“𝐶”〉 ↔ 𝐴 = 𝐶)) |
| 4 | s111 14587 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉) → (〈“𝐵”〉 = 〈“𝐷”〉 ↔ 𝐵 = 𝐷)) | |
| 5 | 4 | ad2ant2l 746 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐵”〉 = 〈“𝐷”〉 ↔ 𝐵 = 𝐷)) |
| 6 | 3, 5 | anbi12d 632 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((〈“𝐴”〉 = 〈“𝐶”〉 ∧ 〈“𝐵”〉 = 〈“𝐷”〉) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 7 | 1, 6 | bitrd 279 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈“cs1 14567 〈“cs2 14814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-s2 14821 |
| This theorem is referenced by: s3eq3seq 14912 |
| Copyright terms: Public domain | W3C validator |