![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccats1alpha | Structured version Visualization version GIF version |
Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.) |
Ref | Expression |
---|---|
ccats1alpha | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdv 14506 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → 𝐴 ∈ Word V) | |
2 | s1cli 14582 | . . . 4 ⊢ ⟨“𝑋”⟩ ∈ Word V | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ⟨“𝑋”⟩ ∈ Word V) |
4 | ccatalpha 14570 | . . 3 ⊢ ((𝐴 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆))) | |
5 | 1, 3, 4 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆))) |
6 | simpr 483 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ⟨“𝑋”⟩ ∈ Word 𝑆) | |
7 | s1len 14583 | . . . . . . . 8 ⊢ (♯‘⟨“𝑋”⟩) = 1 | |
8 | wrdl1exs1 14590 | . . . . . . . 8 ⊢ ((⟨“𝑋”⟩ ∈ Word 𝑆 ∧ (♯‘⟨“𝑋”⟩) = 1) → ∃𝑤 ∈ 𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩) | |
9 | 6, 7, 8 | sylancl 584 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ∃𝑤 ∈ 𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩) |
10 | elex 3482 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
11 | 10 | adantr 479 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋 ∈ V) |
12 | elex 3482 | . . . . . . . . . 10 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ V) | |
13 | s111 14592 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤)) | |
14 | 11, 12, 13 | syl2an 594 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤)) |
15 | simpr 483 | . . . . . . . . . 10 ⊢ (((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) | |
16 | eleq1 2813 | . . . . . . . . . 10 ⊢ (𝑋 = 𝑤 → (𝑋 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) | |
17 | 15, 16 | syl5ibrcom 246 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (𝑋 = 𝑤 → 𝑋 ∈ 𝑆)) |
18 | 14, 17 | sylbid 239 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋 ∈ 𝑆)) |
19 | 18 | rexlimdva 3145 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → (∃𝑤 ∈ 𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋 ∈ 𝑆)) |
20 | 9, 19 | mpd 15 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋 ∈ 𝑆) |
21 | 20 | ex 411 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆 → 𝑋 ∈ 𝑆)) |
22 | s1cl 14579 | . . . . 5 ⊢ (𝑋 ∈ 𝑆 → ⟨“𝑋”⟩ ∈ Word 𝑆) | |
23 | 21, 22 | impbid1 224 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆 ↔ 𝑋 ∈ 𝑆)) |
24 | 23 | anbi2d 628 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
25 | 24 | adantl 480 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
26 | 5, 25 | bitrd 278 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 Vcvv 3463 ‘cfv 6543 (class class class)co 7413 1c1 11134 ♯chash 14316 Word cword 14491 ++ cconcat 14547 ⟨“cs1 14572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-hash 14317 df-word 14492 df-concat 14548 df-s1 14573 |
This theorem is referenced by: clwwlknonwwlknonb 29955 |
Copyright terms: Public domain | W3C validator |