![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccats1alpha | Structured version Visualization version GIF version |
Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.) |
Ref | Expression |
---|---|
ccats1alpha | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdv 14577 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → 𝐴 ∈ Word V) | |
2 | s1cli 14653 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 〈“𝑋”〉 ∈ Word V) |
4 | ccatalpha 14641 | . . 3 ⊢ ((𝐴 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) | |
5 | 1, 3, 4 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) |
6 | simpr 484 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 〈“𝑋”〉 ∈ Word 𝑆) | |
7 | s1len 14654 | . . . . . . . 8 ⊢ (♯‘〈“𝑋”〉) = 1 | |
8 | wrdl1exs1 14661 | . . . . . . . 8 ⊢ ((〈“𝑋”〉 ∈ Word 𝑆 ∧ (♯‘〈“𝑋”〉) = 1) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) | |
9 | 6, 7, 8 | sylancl 585 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) |
10 | elex 3509 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
11 | 10 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ V) |
12 | elex 3509 | . . . . . . . . . 10 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ V) | |
13 | s111 14663 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) | |
14 | 11, 12, 13 | syl2an 595 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) |
15 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) | |
16 | eleq1 2832 | . . . . . . . . . 10 ⊢ (𝑋 = 𝑤 → (𝑋 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) | |
17 | 15, 16 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (𝑋 = 𝑤 → 𝑋 ∈ 𝑆)) |
18 | 14, 17 | sylbid 240 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
19 | 18 | rexlimdva 3161 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → (∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
20 | 9, 19 | mpd 15 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ 𝑆) |
21 | 20 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 → 𝑋 ∈ 𝑆)) |
22 | s1cl 14650 | . . . . 5 ⊢ (𝑋 ∈ 𝑆 → 〈“𝑋”〉 ∈ Word 𝑆) | |
23 | 21, 22 | impbid1 225 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 ↔ 𝑋 ∈ 𝑆)) |
24 | 23 | anbi2d 629 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
25 | 24 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
26 | 5, 25 | bitrd 279 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ‘cfv 6573 (class class class)co 7448 1c1 11185 ♯chash 14379 Word cword 14562 ++ cconcat 14618 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 |
This theorem is referenced by: clwwlknonwwlknonb 30138 |
Copyright terms: Public domain | W3C validator |