| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccats1alpha | Structured version Visualization version GIF version | ||
| Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.) |
| Ref | Expression |
|---|---|
| ccats1alpha | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdv 14470 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → 𝐴 ∈ Word V) | |
| 2 | s1cli 14546 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 〈“𝑋”〉 ∈ Word V) |
| 4 | ccatalpha 14534 | . . 3 ⊢ ((𝐴 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) | |
| 5 | 1, 3, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) |
| 6 | simpr 484 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 〈“𝑋”〉 ∈ Word 𝑆) | |
| 7 | s1len 14547 | . . . . . . . 8 ⊢ (♯‘〈“𝑋”〉) = 1 | |
| 8 | wrdl1exs1 14554 | . . . . . . . 8 ⊢ ((〈“𝑋”〉 ∈ Word 𝑆 ∧ (♯‘〈“𝑋”〉) = 1) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) | |
| 9 | 6, 7, 8 | sylancl 586 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) |
| 10 | elex 3465 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
| 11 | 10 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ V) |
| 12 | elex 3465 | . . . . . . . . . 10 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ V) | |
| 13 | s111 14556 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) | |
| 14 | 11, 12, 13 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) |
| 15 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) | |
| 16 | eleq1 2816 | . . . . . . . . . 10 ⊢ (𝑋 = 𝑤 → (𝑋 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) | |
| 17 | 15, 16 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (𝑋 = 𝑤 → 𝑋 ∈ 𝑆)) |
| 18 | 14, 17 | sylbid 240 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
| 19 | 18 | rexlimdva 3134 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → (∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
| 20 | 9, 19 | mpd 15 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ 𝑆) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 → 𝑋 ∈ 𝑆)) |
| 22 | s1cl 14543 | . . . . 5 ⊢ (𝑋 ∈ 𝑆 → 〈“𝑋”〉 ∈ Word 𝑆) | |
| 23 | 21, 22 | impbid1 225 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 ↔ 𝑋 ∈ 𝑆)) |
| 24 | 23 | anbi2d 630 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| 25 | 24 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| 26 | 5, 25 | bitrd 279 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 1c1 11045 ♯chash 14271 Word cword 14454 ++ cconcat 14511 〈“cs1 14536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 |
| This theorem is referenced by: clwwlknonwwlknonb 30085 |
| Copyright terms: Public domain | W3C validator |