Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccats1alpha | Structured version Visualization version GIF version |
Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.) |
Ref | Expression |
---|---|
ccats1alpha | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdv 14230 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → 𝐴 ∈ Word V) | |
2 | s1cli 14308 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 〈“𝑋”〉 ∈ Word V) |
4 | ccatalpha 14296 | . . 3 ⊢ ((𝐴 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) | |
5 | 1, 3, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) |
6 | simpr 485 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 〈“𝑋”〉 ∈ Word 𝑆) | |
7 | s1len 14309 | . . . . . . . 8 ⊢ (♯‘〈“𝑋”〉) = 1 | |
8 | wrdl1exs1 14316 | . . . . . . . 8 ⊢ ((〈“𝑋”〉 ∈ Word 𝑆 ∧ (♯‘〈“𝑋”〉) = 1) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) | |
9 | 6, 7, 8 | sylancl 586 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) |
10 | elex 3449 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
11 | 10 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ V) |
12 | elex 3449 | . . . . . . . . . 10 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ V) | |
13 | s111 14318 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) | |
14 | 11, 12, 13 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) |
15 | simpr 485 | . . . . . . . . . 10 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) | |
16 | eleq1 2828 | . . . . . . . . . 10 ⊢ (𝑋 = 𝑤 → (𝑋 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) | |
17 | 15, 16 | syl5ibrcom 246 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (𝑋 = 𝑤 → 𝑋 ∈ 𝑆)) |
18 | 14, 17 | sylbid 239 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
19 | 18 | rexlimdva 3215 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → (∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
20 | 9, 19 | mpd 15 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ 𝑆) |
21 | 20 | ex 413 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 → 𝑋 ∈ 𝑆)) |
22 | s1cl 14305 | . . . . 5 ⊢ (𝑋 ∈ 𝑆 → 〈“𝑋”〉 ∈ Word 𝑆) | |
23 | 21, 22 | impbid1 224 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 ↔ 𝑋 ∈ 𝑆)) |
24 | 23 | anbi2d 629 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
25 | 24 | adantl 482 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
26 | 5, 25 | bitrd 278 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 Vcvv 3431 ‘cfv 6432 (class class class)co 7271 1c1 10873 ♯chash 14042 Word cword 14215 ++ cconcat 14271 〈“cs1 14298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-oadd 8292 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-dju 9660 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-hash 14043 df-word 14216 df-concat 14272 df-s1 14299 |
This theorem is referenced by: clwwlknonwwlknonb 28466 |
Copyright terms: Public domain | W3C validator |