MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1alpha Structured version   Visualization version   GIF version

Theorem ccats1alpha 14526
Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.)
Assertion
Ref Expression
ccats1alpha ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))

Proof of Theorem ccats1alpha
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wrdv 14436 . . 3 (𝐴 ∈ Word 𝑉𝐴 ∈ Word V)
2 s1cli 14512 . . . 4 ⟨“𝑋”⟩ ∈ Word V
32a1i 11 . . 3 (𝑋𝑈 → ⟨“𝑋”⟩ ∈ Word V)
4 ccatalpha 14500 . . 3 ((𝐴 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆)))
51, 3, 4syl2an 596 . 2 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆)))
6 simpr 484 . . . . . . . 8 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ⟨“𝑋”⟩ ∈ Word 𝑆)
7 s1len 14513 . . . . . . . 8 (♯‘⟨“𝑋”⟩) = 1
8 wrdl1exs1 14520 . . . . . . . 8 ((⟨“𝑋”⟩ ∈ Word 𝑆 ∧ (♯‘⟨“𝑋”⟩) = 1) → ∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩)
96, 7, 8sylancl 586 . . . . . . 7 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩)
10 elex 3457 . . . . . . . . . . 11 (𝑋𝑈𝑋 ∈ V)
1110adantr 480 . . . . . . . . . 10 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋 ∈ V)
12 elex 3457 . . . . . . . . . 10 (𝑤𝑆𝑤 ∈ V)
13 s111 14522 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤))
1411, 12, 13syl2an 596 . . . . . . . . 9 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤))
15 simpr 484 . . . . . . . . . 10 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → 𝑤𝑆)
16 eleq1 2816 . . . . . . . . . 10 (𝑋 = 𝑤 → (𝑋𝑆𝑤𝑆))
1715, 16syl5ibrcom 247 . . . . . . . . 9 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (𝑋 = 𝑤𝑋𝑆))
1814, 17sylbid 240 . . . . . . . 8 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋𝑆))
1918rexlimdva 3130 . . . . . . 7 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → (∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋𝑆))
209, 19mpd 15 . . . . . 6 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋𝑆)
2120ex 412 . . . . 5 (𝑋𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆𝑋𝑆))
22 s1cl 14509 . . . . 5 (𝑋𝑆 → ⟨“𝑋”⟩ ∈ Word 𝑆)
2321, 22impbid1 225 . . . 4 (𝑋𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆𝑋𝑆))
2423anbi2d 630 . . 3 (𝑋𝑈 → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
2524adantl 481 . 2 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
265, 25bitrd 279 1 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  cfv 6482  (class class class)co 7349  1c1 11010  chash 14237  Word cword 14420   ++ cconcat 14477  ⟨“cs1 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503
This theorem is referenced by:  clwwlknonwwlknonb  30050
  Copyright terms: Public domain W3C validator