MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1alpha Structured version   Visualization version   GIF version

Theorem ccats1alpha 14565
Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.)
Assertion
Ref Expression
ccats1alpha ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))

Proof of Theorem ccats1alpha
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wrdv 14475 . . 3 (𝐴 ∈ Word 𝑉𝐴 ∈ Word V)
2 s1cli 14551 . . . 4 ⟨“𝑋”⟩ ∈ Word V
32a1i 11 . . 3 (𝑋𝑈 → ⟨“𝑋”⟩ ∈ Word V)
4 ccatalpha 14539 . . 3 ((𝐴 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆)))
51, 3, 4syl2an 596 . 2 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆)))
6 simpr 485 . . . . . . . 8 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ⟨“𝑋”⟩ ∈ Word 𝑆)
7 s1len 14552 . . . . . . . 8 (♯‘⟨“𝑋”⟩) = 1
8 wrdl1exs1 14559 . . . . . . . 8 ((⟨“𝑋”⟩ ∈ Word 𝑆 ∧ (♯‘⟨“𝑋”⟩) = 1) → ∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩)
96, 7, 8sylancl 586 . . . . . . 7 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩)
10 elex 3492 . . . . . . . . . . 11 (𝑋𝑈𝑋 ∈ V)
1110adantr 481 . . . . . . . . . 10 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋 ∈ V)
12 elex 3492 . . . . . . . . . 10 (𝑤𝑆𝑤 ∈ V)
13 s111 14561 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤))
1411, 12, 13syl2an 596 . . . . . . . . 9 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤))
15 simpr 485 . . . . . . . . . 10 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → 𝑤𝑆)
16 eleq1 2821 . . . . . . . . . 10 (𝑋 = 𝑤 → (𝑋𝑆𝑤𝑆))
1715, 16syl5ibrcom 246 . . . . . . . . 9 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (𝑋 = 𝑤𝑋𝑆))
1814, 17sylbid 239 . . . . . . . 8 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋𝑆))
1918rexlimdva 3155 . . . . . . 7 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → (∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋𝑆))
209, 19mpd 15 . . . . . 6 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋𝑆)
2120ex 413 . . . . 5 (𝑋𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆𝑋𝑆))
22 s1cl 14548 . . . . 5 (𝑋𝑆 → ⟨“𝑋”⟩ ∈ Word 𝑆)
2321, 22impbid1 224 . . . 4 (𝑋𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆𝑋𝑆))
2423anbi2d 629 . . 3 (𝑋𝑈 → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
2524adantl 482 . 2 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
265, 25bitrd 278 1 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  cfv 6540  (class class class)co 7405  1c1 11107  chash 14286  Word cword 14460   ++ cconcat 14516  ⟨“cs1 14541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542
This theorem is referenced by:  clwwlknonwwlknonb  29348
  Copyright terms: Public domain W3C validator