| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccats1alpha | Structured version Visualization version GIF version | ||
| Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.) |
| Ref | Expression |
|---|---|
| ccats1alpha | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdv 14436 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → 𝐴 ∈ Word V) | |
| 2 | s1cli 14513 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 〈“𝑋”〉 ∈ Word V) |
| 4 | ccatalpha 14501 | . . 3 ⊢ ((𝐴 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) | |
| 5 | 1, 3, 4 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) |
| 6 | simpr 484 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 〈“𝑋”〉 ∈ Word 𝑆) | |
| 7 | s1len 14514 | . . . . . . . 8 ⊢ (♯‘〈“𝑋”〉) = 1 | |
| 8 | wrdl1exs1 14521 | . . . . . . . 8 ⊢ ((〈“𝑋”〉 ∈ Word 𝑆 ∧ (♯‘〈“𝑋”〉) = 1) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) | |
| 9 | 6, 7, 8 | sylancl 586 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) |
| 10 | elex 3457 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
| 11 | 10 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ V) |
| 12 | elex 3457 | . . . . . . . . . 10 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ V) | |
| 13 | s111 14523 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) | |
| 14 | 11, 12, 13 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) |
| 15 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) | |
| 16 | eleq1 2819 | . . . . . . . . . 10 ⊢ (𝑋 = 𝑤 → (𝑋 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) | |
| 17 | 15, 16 | syl5ibrcom 247 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (𝑋 = 𝑤 → 𝑋 ∈ 𝑆)) |
| 18 | 14, 17 | sylbid 240 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
| 19 | 18 | rexlimdva 3133 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → (∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
| 20 | 9, 19 | mpd 15 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ 𝑆) |
| 21 | 20 | ex 412 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 → 𝑋 ∈ 𝑆)) |
| 22 | s1cl 14510 | . . . . 5 ⊢ (𝑋 ∈ 𝑆 → 〈“𝑋”〉 ∈ Word 𝑆) | |
| 23 | 21, 22 | impbid1 225 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 ↔ 𝑋 ∈ 𝑆)) |
| 24 | 23 | anbi2d 630 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| 25 | 24 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| 26 | 5, 25 | bitrd 279 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 1c1 11007 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 |
| This theorem is referenced by: clwwlknonwwlknonb 30086 |
| Copyright terms: Public domain | W3C validator |