MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eq3seq Structured version   Visualization version   GIF version

Theorem s3eq3seq 14895
Description: Two length 3 words are equal iff the corresponding symbols are equal. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
s3eq3seq (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))

Proof of Theorem s3eq3seq
StepHypRef Expression
1 s3eqs2s1eq 14894 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
2 3simpa 1147 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
3 3simpa 1147 . . . . 5 ((𝐷𝑉𝐸𝑉𝐹𝑉) → (𝐷𝑉𝐸𝑉))
4 s2eq2seq 14893 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ (𝐷𝑉𝐸𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸)))
52, 3, 4syl2an 595 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸)))
6 simp3 1137 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
7 simp3 1137 . . . . 5 ((𝐷𝑉𝐸𝑉𝐹𝑉) → 𝐹𝑉)
8 s111 14570 . . . . 5 ((𝐶𝑉𝐹𝑉) → (⟨“𝐶”⟩ = ⟨“𝐹”⟩ ↔ 𝐶 = 𝐹))
96, 7, 8syl2an 595 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐶”⟩ = ⟨“𝐹”⟩ ↔ 𝐶 = 𝐹))
105, 9anbi12d 630 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ((⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹)))
11 df-3an 1088 . . 3 ((𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹))
1210, 11bitr4di 289 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ((⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩) ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
131, 12bitrd 279 1 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  ⟨“cs1 14550  ⟨“cs2 14797  ⟨“cs3 14798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-concat 14526  df-s1 14551  df-substr 14596  df-pfx 14626  df-s2 14804  df-s3 14805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator