MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eq3seq Structured version   Visualization version   GIF version

Theorem s3eq3seq 14979
Description: Two length 3 words are equal iff the corresponding symbols are equal. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
s3eq3seq (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))

Proof of Theorem s3eq3seq
StepHypRef Expression
1 s3eqs2s1eq 14978 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
2 3simpa 1148 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
3 3simpa 1148 . . . . 5 ((𝐷𝑉𝐸𝑉𝐹𝑉) → (𝐷𝑉𝐸𝑉))
4 s2eq2seq 14977 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ (𝐷𝑉𝐸𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸)))
52, 3, 4syl2an 596 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸)))
6 simp3 1138 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶𝑉)
7 simp3 1138 . . . . 5 ((𝐷𝑉𝐸𝑉𝐹𝑉) → 𝐹𝑉)
8 s111 14654 . . . . 5 ((𝐶𝑉𝐹𝑉) → (⟨“𝐶”⟩ = ⟨“𝐹”⟩ ↔ 𝐶 = 𝐹))
96, 7, 8syl2an 596 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐶”⟩ = ⟨“𝐹”⟩ ↔ 𝐶 = 𝐹))
105, 9anbi12d 632 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ((⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹)))
11 df-3an 1088 . . 3 ((𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹))
1210, 11bitr4di 289 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ((⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩) ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
131, 12bitrd 279 1 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  ⟨“cs1 14634  ⟨“cs2 14881  ⟨“cs3 14882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-s2 14888  df-s3 14889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator