![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scafval | Structured version Visualization version GIF version |
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | β’ π΅ = (Baseβπ) |
scaffval.f | β’ πΉ = (Scalarβπ) |
scaffval.k | β’ πΎ = (BaseβπΉ) |
scaffval.a | β’ β = ( Β·sf βπ) |
scaffval.s | β’ Β· = ( Β·π βπ) |
Ref | Expression |
---|---|
scafval | β’ ((π β πΎ β§ π β π΅) β (π β π) = (π Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7421 | . 2 β’ ((π₯ = π β§ π¦ = π) β (π₯ Β· π¦) = (π Β· π)) | |
2 | scaffval.b | . . 3 β’ π΅ = (Baseβπ) | |
3 | scaffval.f | . . 3 β’ πΉ = (Scalarβπ) | |
4 | scaffval.k | . . 3 β’ πΎ = (BaseβπΉ) | |
5 | scaffval.a | . . 3 β’ β = ( Β·sf βπ) | |
6 | scaffval.s | . . 3 β’ Β· = ( Β·π βπ) | |
7 | 2, 3, 4, 5, 6 | scaffval 20722 | . 2 β’ β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯ Β· π¦)) |
8 | ovex 7445 | . 2 β’ (π Β· π) β V | |
9 | 1, 7, 8 | ovmpoa 7566 | 1 β’ ((π β πΎ β§ π β π΅) β (π β π) = (π Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 Basecbs 17151 Scalarcsca 17207 Β·π cvsca 17208 Β·sf cscaf 20703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-scaf 20705 |
This theorem is referenced by: lmodfopne 20742 cnmpt1vsca 24019 cnmpt2vsca 24020 nlmvscn 24525 |
Copyright terms: Public domain | W3C validator |