MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scafval Structured version   Visualization version   GIF version

Theorem scafval 20812
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scafval ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))

Proof of Theorem scafval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7355 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
2 scaffval.b . . 3 𝐵 = (Base‘𝑊)
3 scaffval.f . . 3 𝐹 = (Scalar‘𝑊)
4 scaffval.k . . 3 𝐾 = (Base‘𝐹)
5 scaffval.a . . 3 = ( ·sf𝑊)
6 scaffval.s . . 3 · = ( ·𝑠𝑊)
72, 3, 4, 5, 6scaffval 20811 . 2 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
8 ovex 7379 . 2 (𝑋 · 𝑌) ∈ V
91, 7, 8ovmpoa 7501 1 ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  Scalarcsca 17161   ·𝑠 cvsca 17162   ·sf cscaf 20792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-scaf 20794
This theorem is referenced by:  lmodfopne  20831  cnmpt1vsca  24107  cnmpt2vsca  24108  nlmvscn  24600
  Copyright terms: Public domain W3C validator