MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scafval Structured version   Visualization version   GIF version

Theorem scafval 20723
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐡 = (Baseβ€˜π‘Š)
scaffval.f 𝐹 = (Scalarβ€˜π‘Š)
scaffval.k 𝐾 = (Baseβ€˜πΉ)
scaffval.a βˆ™ = ( Β·sf β€˜π‘Š)
scaffval.s Β· = ( ·𝑠 β€˜π‘Š)
Assertion
Ref Expression
scafval ((𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 βˆ™ π‘Œ) = (𝑋 Β· π‘Œ))

Proof of Theorem scafval
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7421 . 2 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯ Β· 𝑦) = (𝑋 Β· π‘Œ))
2 scaffval.b . . 3 𝐡 = (Baseβ€˜π‘Š)
3 scaffval.f . . 3 𝐹 = (Scalarβ€˜π‘Š)
4 scaffval.k . . 3 𝐾 = (Baseβ€˜πΉ)
5 scaffval.a . . 3 βˆ™ = ( Β·sf β€˜π‘Š)
6 scaffval.s . . 3 Β· = ( ·𝑠 β€˜π‘Š)
72, 3, 4, 5, 6scaffval 20722 . 2 βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦))
8 ovex 7445 . 2 (𝑋 Β· π‘Œ) ∈ V
91, 7, 8ovmpoa 7566 1 ((𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 βˆ™ π‘Œ) = (𝑋 Β· π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  Scalarcsca 17207   ·𝑠 cvsca 17208   Β·sf cscaf 20703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-scaf 20705
This theorem is referenced by:  lmodfopne  20742  cnmpt1vsca  24019  cnmpt2vsca  24020  nlmvscn  24525
  Copyright terms: Public domain W3C validator