![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scafval | Structured version Visualization version GIF version |
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
scaffval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
scafval | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7440 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 · 𝑦) = (𝑋 · 𝑌)) | |
2 | scaffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | scaffval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | scaffval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
5 | scaffval.a | . . 3 ⊢ ∙ = ( ·sf ‘𝑊) | |
6 | scaffval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | 2, 3, 4, 5, 6 | scaffval 20895 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) |
8 | ovex 7464 | . 2 ⊢ (𝑋 · 𝑌) ∈ V | |
9 | 1, 7, 8 | ovmpoa 7588 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 ·sf cscaf 20876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-scaf 20878 |
This theorem is referenced by: lmodfopne 20915 cnmpt1vsca 24218 cnmpt2vsca 24219 nlmvscn 24724 |
Copyright terms: Public domain | W3C validator |