MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scafval Structured version   Visualization version   GIF version

Theorem scafval 20757
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scafval ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))

Proof of Theorem scafval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7423 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
2 scaffval.b . . 3 𝐵 = (Base‘𝑊)
3 scaffval.f . . 3 𝐹 = (Scalar‘𝑊)
4 scaffval.k . . 3 𝐾 = (Base‘𝐹)
5 scaffval.a . . 3 = ( ·sf𝑊)
6 scaffval.s . . 3 · = ( ·𝑠𝑊)
72, 3, 4, 5, 6scaffval 20756 . 2 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
8 ovex 7447 . 2 (𝑋 · 𝑌) ∈ V
91, 7, 8ovmpoa 7570 1 ((𝑋𝐾𝑌𝐵) → (𝑋 𝑌) = (𝑋 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cfv 6542  (class class class)co 7414  Basecbs 17173  Scalarcsca 17229   ·𝑠 cvsca 17230   ·sf cscaf 20737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-scaf 20739
This theorem is referenced by:  lmodfopne  20776  cnmpt1vsca  24091  cnmpt2vsca  24092  nlmvscn  24597
  Copyright terms: Public domain W3C validator