![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scafval | Structured version Visualization version GIF version |
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
scaffval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
scafval | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7423 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 · 𝑦) = (𝑋 · 𝑌)) | |
2 | scaffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
3 | scaffval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | scaffval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
5 | scaffval.a | . . 3 ⊢ ∙ = ( ·sf ‘𝑊) | |
6 | scaffval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | 2, 3, 4, 5, 6 | scaffval 20756 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) |
8 | ovex 7447 | . 2 ⊢ (𝑋 · 𝑌) ∈ V | |
9 | 1, 7, 8 | ovmpoa 7570 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 Scalarcsca 17229 ·𝑠 cvsca 17230 ·sf cscaf 20737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-scaf 20739 |
This theorem is referenced by: lmodfopne 20776 cnmpt1vsca 24091 cnmpt2vsca 24092 nlmvscn 24597 |
Copyright terms: Public domain | W3C validator |