MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinval Structured version   Visualization version   GIF version

Theorem resinval 15348
Description: The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
resinval (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴))))

Proof of Theorem resinval
StepHypRef Expression
1 ax-icn 10394 . . . . . . . 8 i ∈ ℂ
2 recn 10425 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 cjmul 14362 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
41, 2, 3sylancr 578 . . . . . . 7 (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
5 cji 14379 . . . . . . . . 9 (∗‘i) = -i
65oveq1i 6986 . . . . . . . 8 ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴))
7 cjre 14359 . . . . . . . . 9 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
87oveq2d 6992 . . . . . . . 8 (𝐴 ∈ ℝ → (-i · (∗‘𝐴)) = (-i · 𝐴))
96, 8syl5eq 2827 . . . . . . 7 (𝐴 ∈ ℝ → ((∗‘i) · (∗‘𝐴)) = (-i · 𝐴))
104, 9eqtrd 2815 . . . . . 6 (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = (-i · 𝐴))
1110fveq2d 6503 . . . . 5 (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (exp‘(-i · 𝐴)))
12 mulcl 10419 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
131, 2, 12sylancr 578 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
14 efcj 15305 . . . . . 6 ((i · 𝐴) ∈ ℂ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴))))
1513, 14syl 17 . . . . 5 (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴))))
1611, 15eqtr3d 2817 . . . 4 (𝐴 ∈ ℝ → (exp‘(-i · 𝐴)) = (∗‘(exp‘(i · 𝐴))))
1716oveq2d 6992 . . 3 (𝐴 ∈ ℝ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))))
1817oveq1d 6991 . 2 (𝐴 ∈ ℝ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i)))
19 sinval 15335 . . 3 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
202, 19syl 17 . 2 (𝐴 ∈ ℝ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
21 efcl 15296 . . 3 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
22 imval2 14371 . . 3 ((exp‘(i · 𝐴)) ∈ ℂ → (ℑ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i)))
2313, 21, 223syl 18 . 2 (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i)))
2418, 20, 233eqtr4d 2825 1 (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  cfv 6188  (class class class)co 6976  cc 10333  cr 10334  ici 10337   · cmul 10340  cmin 10670  -cneg 10671   / cdiv 11098  2c2 11495  ccj 14316  cim 14318  expce 15275  sincsin 15277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-ico 12560  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-fac 13449  df-hash 13506  df-shft 14287  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904  df-ef 15281  df-sin 15283
This theorem is referenced by:  resin4p  15351  resincl  15353  argimgt0  24896
  Copyright terms: Public domain W3C validator