| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resinval | Structured version Visualization version GIF version | ||
| Description: The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| Ref | Expression |
|---|---|
| resinval | ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11060 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 2 | recn 11091 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | cjmul 15044 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴))) |
| 5 | cji 15061 | . . . . . . . . 9 ⊢ (∗‘i) = -i | |
| 6 | 5 | oveq1i 7351 | . . . . . . . 8 ⊢ ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴)) |
| 7 | cjre 15041 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
| 8 | 7 | oveq2d 7357 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (-i · (∗‘𝐴)) = (-i · 𝐴)) |
| 9 | 6, 8 | eqtrid 2778 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((∗‘i) · (∗‘𝐴)) = (-i · 𝐴)) |
| 10 | 4, 9 | eqtrd 2766 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (∗‘(i · 𝐴)) = (-i · 𝐴)) |
| 11 | 10 | fveq2d 6821 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (exp‘(-i · 𝐴))) |
| 12 | mulcl 11085 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 13 | 1, 2, 12 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
| 14 | efcj 15994 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (exp‘(∗‘(i · 𝐴))) = (∗‘(exp‘(i · 𝐴)))) |
| 16 | 11, 15 | eqtr3d 2768 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(-i · 𝐴)) = (∗‘(exp‘(i · 𝐴)))) |
| 17 | 16 | oveq2d 7357 | . . 3 ⊢ (𝐴 ∈ ℝ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴))))) |
| 18 | 17 | oveq1d 7356 | . 2 ⊢ (𝐴 ∈ ℝ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i))) |
| 19 | sinval 16026 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
| 20 | 2, 19 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
| 21 | efcl 15984 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
| 22 | imval2 15053 | . . 3 ⊢ ((exp‘(i · 𝐴)) ∈ ℂ → (ℑ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i))) | |
| 23 | 13, 21, 22 | 3syl 18 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘(exp‘(i · 𝐴))) = (((exp‘(i · 𝐴)) − (∗‘(exp‘(i · 𝐴)))) / (2 · i))) |
| 24 | 18, 20, 23 | 3eqtr4d 2776 | 1 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 ici 11003 · cmul 11006 − cmin 11339 -cneg 11340 / cdiv 11769 2c2 12175 ∗ccj 14998 ℑcim 15000 expce 15963 sincsin 15965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-fac 14176 df-hash 14233 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-ef 15969 df-sin 15971 |
| This theorem is referenced by: resin4p 16042 resincl 16044 argimgt0 26543 |
| Copyright terms: Public domain | W3C validator |