Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eflegeo | Structured version Visualization version GIF version |
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
Ref | Expression |
---|---|
eflegeo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
eflegeo.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
eflegeo.3 | ⊢ (𝜑 → 𝐴 < 1) |
Ref | Expression |
---|---|
eflegeo | ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12549 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12261 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | eqid 2738 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
4 | 3 | eftval 15714 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
6 | eflegeo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | reeftcl 15712 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
8 | 6, 7 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
9 | oveq2 7263 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
10 | eqid 2738 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) | |
11 | ovex 7288 | . . . . 5 ⊢ (𝐴↑𝑘) ∈ V | |
12 | 9, 10, 11 | fvmpt 6857 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
14 | reexpcl 13727 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) | |
15 | 6, 14 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
16 | faccl 13925 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
18 | 17 | nnred 11918 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ) |
19 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
21 | eflegeo.2 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴) |
23 | 19, 20, 22 | expge0d 13810 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴↑𝑘)) |
24 | 17 | nnge1d 11951 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘)) |
25 | 15, 18, 23, 24 | lemulge12d 11843 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘))) |
26 | 17 | nngt0d 11952 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘)) |
27 | ledivmul 11781 | . . . . 5 ⊢ (((𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) | |
28 | 15, 15, 18, 26, 27 | syl112anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) |
29 | 25, 28 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘)) |
30 | 6 | recnd 10934 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
31 | 3 | efcllem 15715 | . . . 4 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
33 | 6, 21 | absidd 15062 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
34 | eflegeo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 1) | |
35 | 33, 34 | eqbrtrd 5092 | . . . . 5 ⊢ (𝜑 → (abs‘𝐴) < 1) |
36 | 30, 35, 13 | geolim 15510 | . . . 4 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴))) |
37 | seqex 13651 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ V | |
38 | ovex 7288 | . . . . 5 ⊢ (1 / (1 − 𝐴)) ∈ V | |
39 | 37, 38 | breldm 5806 | . . . 4 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
40 | 36, 39 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
41 | 1, 2, 5, 8, 13, 15, 29, 32, 40 | isumle 15484 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
42 | efval 15717 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | |
43 | 30, 42 | syl 17 | . 2 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
44 | expcl 13728 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
45 | 30, 44 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
46 | 1, 2, 13, 45, 36 | isumclim 15397 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) |
47 | 46 | eqcomd 2744 | . 2 ⊢ (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
48 | 41, 43, 47 | 3brtr4d 5102 | 1 ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 seqcseq 13649 ↑cexp 13710 !cfa 13915 abscabs 14873 ⇝ cli 15121 Σcsu 15325 expce 15699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 |
This theorem is referenced by: birthdaylem3 26008 logdiflbnd 26049 emcllem2 26051 |
Copyright terms: Public domain | W3C validator |