| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eflegeo | Structured version Visualization version GIF version | ||
| Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
| Ref | Expression |
|---|---|
| eflegeo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eflegeo.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| eflegeo.3 | ⊢ (𝜑 → 𝐴 < 1) |
| Ref | Expression |
|---|---|
| eflegeo | ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12842 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12548 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 4 | 3 | eftval 16049 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 6 | eflegeo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | reeftcl 16047 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
| 8 | 6, 7 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 9 | oveq2 7398 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
| 10 | eqid 2730 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) | |
| 11 | ovex 7423 | . . . . 5 ⊢ (𝐴↑𝑘) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6971 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 14 | reexpcl 14050 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) | |
| 15 | 6, 14 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
| 16 | faccl 14255 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
| 18 | 17 | nnred 12208 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ) |
| 19 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 21 | eflegeo.2 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴) |
| 23 | 19, 20, 22 | expge0d 14136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴↑𝑘)) |
| 24 | 17 | nnge1d 12241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘)) |
| 25 | 15, 18, 23, 24 | lemulge12d 12128 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘))) |
| 26 | 17 | nngt0d 12242 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘)) |
| 27 | ledivmul 12066 | . . . . 5 ⊢ (((𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) | |
| 28 | 15, 15, 18, 26, 27 | syl112anc 1376 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) |
| 29 | 25, 28 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘)) |
| 30 | 6 | recnd 11209 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 31 | 3 | efcllem 16050 | . . . 4 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
| 33 | 6, 21 | absidd 15396 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
| 34 | eflegeo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 1) | |
| 35 | 33, 34 | eqbrtrd 5132 | . . . . 5 ⊢ (𝜑 → (abs‘𝐴) < 1) |
| 36 | 30, 35, 13 | geolim 15843 | . . . 4 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴))) |
| 37 | seqex 13975 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ V | |
| 38 | ovex 7423 | . . . . 5 ⊢ (1 / (1 − 𝐴)) ∈ V | |
| 39 | 37, 38 | breldm 5875 | . . . 4 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
| 40 | 36, 39 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
| 41 | 1, 2, 5, 8, 13, 15, 29, 32, 40 | isumle 15817 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
| 42 | efval 16052 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | |
| 43 | 30, 42 | syl 17 | . 2 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| 44 | expcl 14051 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
| 45 | 30, 44 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
| 46 | 1, 2, 13, 45, 36 | isumclim 15730 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) |
| 47 | 46 | eqcomd 2736 | . 2 ⊢ (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
| 48 | 41, 43, 47 | 3brtr4d 5142 | 1 ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℕcn 12193 ℕ0cn0 12449 seqcseq 13973 ↑cexp 14033 !cfa 14245 abscabs 15207 ⇝ cli 15457 Σcsu 15659 expce 16034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-fac 14246 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 |
| This theorem is referenced by: birthdaylem3 26870 logdiflbnd 26912 emcllem2 26914 |
| Copyright terms: Public domain | W3C validator |