| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eflegeo | Structured version Visualization version GIF version | ||
| Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
| Ref | Expression |
|---|---|
| eflegeo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eflegeo.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| eflegeo.3 | ⊢ (𝜑 → 𝐴 < 1) |
| Ref | Expression |
|---|---|
| eflegeo | ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12920 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12626 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 4 | 3 | eftval 16091 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 5 | 4 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 6 | eflegeo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | reeftcl 16089 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
| 8 | 6, 7 | sylan 578 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 9 | oveq2 7435 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) | |
| 11 | ovex 7460 | . . . . 5 ⊢ (𝐴↑𝑘) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 7011 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 13 | 12 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 14 | reexpcl 14103 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) | |
| 15 | 6, 14 | sylan 578 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
| 16 | faccl 14306 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
| 17 | 16 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
| 18 | 17 | nnred 12283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ) |
| 19 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
| 20 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 21 | eflegeo.2 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 22 | 21 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴) |
| 23 | 19, 20, 22 | expge0d 14188 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴↑𝑘)) |
| 24 | 17 | nnge1d 12316 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘)) |
| 25 | 15, 18, 23, 24 | lemulge12d 12208 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘))) |
| 26 | 17 | nngt0d 12317 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘)) |
| 27 | ledivmul 12146 | . . . . 5 ⊢ (((𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) | |
| 28 | 15, 15, 18, 26, 27 | syl112anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) |
| 29 | 25, 28 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘)) |
| 30 | 6 | recnd 11293 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 31 | 3 | efcllem 16092 | . . . 4 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
| 32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
| 33 | 6, 21 | absidd 15440 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
| 34 | eflegeo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 1) | |
| 35 | 33, 34 | eqbrtrd 5176 | . . . . 5 ⊢ (𝜑 → (abs‘𝐴) < 1) |
| 36 | 30, 35, 13 | geolim 15887 | . . . 4 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴))) |
| 37 | seqex 14028 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ V | |
| 38 | ovex 7460 | . . . . 5 ⊢ (1 / (1 − 𝐴)) ∈ V | |
| 39 | 37, 38 | breldm 5917 | . . . 4 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
| 40 | 36, 39 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
| 41 | 1, 2, 5, 8, 13, 15, 29, 32, 40 | isumle 15861 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
| 42 | efval 16094 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | |
| 43 | 30, 42 | syl 17 | . 2 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| 44 | expcl 14104 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
| 45 | 30, 44 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
| 46 | 1, 2, 13, 45, 36 | isumclim 15774 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) |
| 47 | 46 | eqcomd 2735 | . 2 ⊢ (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
| 48 | 41, 43, 47 | 3brtr4d 5186 | 1 ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2100 class class class wbr 5154 ↦ cmpt 5237 dom cdm 5684 ‘cfv 6556 (class class class)co 7427 ℂcc 11157 ℝcr 11158 0cc0 11159 1c1 11160 + caddc 11162 · cmul 11164 < clt 11299 ≤ cle 11300 − cmin 11495 / cdiv 11922 ℕcn 12268 ℕ0cn0 12528 seqcseq 14026 ↑cexp 14086 !cfa 14296 abscabs 15252 ⇝ cli 15499 Σcsu 15703 expce 16076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5291 ax-sep 5305 ax-nul 5312 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-inf2 9685 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-nel 3040 df-ral 3055 df-rex 3064 df-rmo 3373 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3788 df-csb 3904 df-dif 3961 df-un 3963 df-in 3965 df-ss 3975 df-pss 3978 df-nul 4334 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4917 df-int 4958 df-iun 5006 df-br 5155 df-opab 5217 df-mpt 5238 df-tr 5272 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-se 5640 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6315 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-isom 6565 df-riota 7383 df-ov 7430 df-oprab 7431 df-mpo 7432 df-om 7882 df-1st 8008 df-2nd 8009 df-frecs 8300 df-wrecs 8331 df-recs 8405 df-rdg 8444 df-1o 8500 df-er 8738 df-pm 8862 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11497 df-neg 11498 df-div 11923 df-nn 12269 df-2 12331 df-3 12332 df-n0 12529 df-z 12615 df-uz 12879 df-rp 13033 df-ico 13388 df-fz 13543 df-fzo 13686 df-fl 13817 df-seq 14027 df-exp 14087 df-fac 14297 df-hash 14354 df-shft 15085 df-cj 15117 df-re 15118 df-im 15119 df-sqrt 15253 df-abs 15254 df-limsup 15486 df-clim 15503 df-rlim 15504 df-sum 15704 df-ef 16082 |
| This theorem is referenced by: birthdaylem3 26978 logdiflbnd 27020 emcllem2 27022 |
| Copyright terms: Public domain | W3C validator |