MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflegeo Structured version   Visualization version   GIF version

Theorem eflegeo 16030
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
Hypotheses
Ref Expression
eflegeo.1 (𝜑𝐴 ∈ ℝ)
eflegeo.2 (𝜑 → 0 ≤ 𝐴)
eflegeo.3 (𝜑𝐴 < 1)
Assertion
Ref Expression
eflegeo (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))

Proof of Theorem eflegeo
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12777 . . 3 0 = (ℤ‘0)
2 0zd 12483 . . 3 (𝜑 → 0 ∈ ℤ)
3 eqid 2729 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
43eftval 15983 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
54adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
6 eflegeo.1 . . . 4 (𝜑𝐴 ∈ ℝ)
7 reeftcl 15981 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
86, 7sylan 580 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
9 oveq2 7357 . . . . 5 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
10 eqid 2729 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
11 ovex 7382 . . . . 5 (𝐴𝑘) ∈ V
129, 10, 11fvmpt 6930 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1312adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
14 reexpcl 13985 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
156, 14sylan 580 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
16 faccl 14190 . . . . . . 7 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
1716adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
1817nnred 12143 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
196adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
20 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
21 eflegeo.2 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2221adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
2319, 20, 22expge0d 14071 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
2417nnge1d 12176 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘))
2515, 18, 23, 24lemulge12d 12063 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘)))
2617nngt0d 12177 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
27 ledivmul 12001 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
2815, 15, 18, 26, 27syl112anc 1376 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
2925, 28mpbird 257 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘))
306recnd 11143 . . . 4 (𝜑𝐴 ∈ ℂ)
313efcllem 15984 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
3230, 31syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
336, 21absidd 15330 . . . . . 6 (𝜑 → (abs‘𝐴) = 𝐴)
34 eflegeo.3 . . . . . 6 (𝜑𝐴 < 1)
3533, 34eqbrtrd 5114 . . . . 5 (𝜑 → (abs‘𝐴) < 1)
3630, 35, 13geolim 15777 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
37 seqex 13910 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
38 ovex 7382 . . . . 5 (1 / (1 − 𝐴)) ∈ V
3937, 38breldm 5851 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
4036, 39syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
411, 2, 5, 8, 13, 15, 29, 32, 40isumle 15751 . 2 (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴𝑘))
42 efval 15986 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
4330, 42syl 17 . 2 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
44 expcl 13986 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4530, 44sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
461, 2, 13, 45, 36isumclim 15664 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
4746eqcomd 2735 . 2 (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴𝑘))
4841, 43, 473brtr4d 5124 1 (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  0cn0 12384  seqcseq 13908  cexp 13968  !cfa 14180  abscabs 15141  cli 15391  Σcsu 15593  expce 15968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974
This theorem is referenced by:  birthdaylem3  26861  logdiflbnd  26903  emcllem2  26905
  Copyright terms: Public domain W3C validator