Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eflegeo | Structured version Visualization version GIF version |
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
Ref | Expression |
---|---|
eflegeo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
eflegeo.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
eflegeo.3 | ⊢ (𝜑 → 𝐴 < 1) |
Ref | Expression |
---|---|
eflegeo | ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12620 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12331 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | eqid 2738 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
4 | 3 | eftval 15786 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
6 | eflegeo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | reeftcl 15784 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
8 | 6, 7 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
9 | oveq2 7283 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
10 | eqid 2738 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) | |
11 | ovex 7308 | . . . . 5 ⊢ (𝐴↑𝑘) ∈ V | |
12 | 9, 10, 11 | fvmpt 6875 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
13 | 12 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
14 | reexpcl 13799 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) | |
15 | 6, 14 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
16 | faccl 13997 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
17 | 16 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
18 | 17 | nnred 11988 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ) |
19 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
20 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
21 | eflegeo.2 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
22 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴) |
23 | 19, 20, 22 | expge0d 13882 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴↑𝑘)) |
24 | 17 | nnge1d 12021 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘)) |
25 | 15, 18, 23, 24 | lemulge12d 11913 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘))) |
26 | 17 | nngt0d 12022 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘)) |
27 | ledivmul 11851 | . . . . 5 ⊢ (((𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) | |
28 | 15, 15, 18, 26, 27 | syl112anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) |
29 | 25, 28 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘)) |
30 | 6 | recnd 11003 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
31 | 3 | efcllem 15787 | . . . 4 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
33 | 6, 21 | absidd 15134 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
34 | eflegeo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 1) | |
35 | 33, 34 | eqbrtrd 5096 | . . . . 5 ⊢ (𝜑 → (abs‘𝐴) < 1) |
36 | 30, 35, 13 | geolim 15582 | . . . 4 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴))) |
37 | seqex 13723 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ V | |
38 | ovex 7308 | . . . . 5 ⊢ (1 / (1 − 𝐴)) ∈ V | |
39 | 37, 38 | breldm 5817 | . . . 4 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
40 | 36, 39 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
41 | 1, 2, 5, 8, 13, 15, 29, 32, 40 | isumle 15556 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
42 | efval 15789 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | |
43 | 30, 42 | syl 17 | . 2 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
44 | expcl 13800 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
45 | 30, 44 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
46 | 1, 2, 13, 45, 36 | isumclim 15469 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) |
47 | 46 | eqcomd 2744 | . 2 ⊢ (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
48 | 41, 43, 47 | 3brtr4d 5106 | 1 ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 ℕ0cn0 12233 seqcseq 13721 ↑cexp 13782 !cfa 13987 abscabs 14945 ⇝ cli 15193 Σcsu 15397 expce 15771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-fac 13988 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 |
This theorem is referenced by: birthdaylem3 26103 logdiflbnd 26144 emcllem2 26146 |
Copyright terms: Public domain | W3C validator |