MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflegeo Structured version   Visualization version   GIF version

Theorem eflegeo 15466
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
Hypotheses
Ref Expression
eflegeo.1 (𝜑𝐴 ∈ ℝ)
eflegeo.2 (𝜑 → 0 ≤ 𝐴)
eflegeo.3 (𝜑𝐴 < 1)
Assertion
Ref Expression
eflegeo (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))

Proof of Theorem eflegeo
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12268 . . 3 0 = (ℤ‘0)
2 0zd 11981 . . 3 (𝜑 → 0 ∈ ℤ)
3 eqid 2798 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
43eftval 15422 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
54adantl 485 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
6 eflegeo.1 . . . 4 (𝜑𝐴 ∈ ℝ)
7 reeftcl 15420 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
86, 7sylan 583 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
9 oveq2 7143 . . . . 5 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
10 eqid 2798 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
11 ovex 7168 . . . . 5 (𝐴𝑘) ∈ V
129, 10, 11fvmpt 6745 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1312adantl 485 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
14 reexpcl 13442 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
156, 14sylan 583 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
16 faccl 13639 . . . . . . 7 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
1716adantl 485 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
1817nnred 11640 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
196adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
20 simpr 488 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
21 eflegeo.2 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2221adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
2319, 20, 22expge0d 13524 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
2417nnge1d 11673 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘))
2515, 18, 23, 24lemulge12d 11567 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘)))
2617nngt0d 11674 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
27 ledivmul 11505 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
2815, 15, 18, 26, 27syl112anc 1371 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
2925, 28mpbird 260 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘))
306recnd 10658 . . . 4 (𝜑𝐴 ∈ ℂ)
313efcllem 15423 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
3230, 31syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
336, 21absidd 14774 . . . . . 6 (𝜑 → (abs‘𝐴) = 𝐴)
34 eflegeo.3 . . . . . 6 (𝜑𝐴 < 1)
3533, 34eqbrtrd 5052 . . . . 5 (𝜑 → (abs‘𝐴) < 1)
3630, 35, 13geolim 15218 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
37 seqex 13366 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
38 ovex 7168 . . . . 5 (1 / (1 − 𝐴)) ∈ V
3937, 38breldm 5741 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
4036, 39syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
411, 2, 5, 8, 13, 15, 29, 32, 40isumle 15191 . 2 (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴𝑘))
42 efval 15425 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
4330, 42syl 17 . 2 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
44 expcl 13443 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4530, 44sylan 583 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
461, 2, 13, 45, 36isumclim 15104 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
4746eqcomd 2804 . 2 (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴𝑘))
4841, 43, 473brtr4d 5062 1 (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cmpt 5110  dom cdm 5519  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  seqcseq 13364  cexp 13425  !cfa 13629  abscabs 14585  cli 14833  Σcsu 15034  expce 15407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413
This theorem is referenced by:  birthdaylem3  25539  logdiflbnd  25580  emcllem2  25582
  Copyright terms: Public domain W3C validator