![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eflegeo | Structured version Visualization version GIF version |
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
Ref | Expression |
---|---|
eflegeo.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
eflegeo.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
eflegeo.3 | ⊢ (𝜑 → 𝐴 < 1) |
Ref | Expression |
---|---|
eflegeo | ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12094 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 11805 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | eqid 2779 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
4 | 3 | eftval 15290 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
5 | 4 | adantl 474 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
6 | eflegeo.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | reeftcl 15288 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
8 | 6, 7 | sylan 572 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
9 | oveq2 6984 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
10 | eqid 2779 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) | |
11 | ovex 7008 | . . . . 5 ⊢ (𝐴↑𝑘) ∈ V | |
12 | 9, 10, 11 | fvmpt 6595 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
13 | 12 | adantl 474 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
14 | reexpcl 13261 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) | |
15 | 6, 14 | sylan 572 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
16 | faccl 13458 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
17 | 16 | adantl 474 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
18 | 17 | nnred 11456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ) |
19 | 6 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ) |
20 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
21 | eflegeo.2 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
22 | 21 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ 𝐴) |
23 | 19, 20, 22 | expge0d 13343 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐴↑𝑘)) |
24 | 17 | nnge1d 11488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘)) |
25 | 15, 18, 23, 24 | lemulge12d 11379 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘))) |
26 | 17 | nngt0d 11489 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘)) |
27 | ledivmul 11317 | . . . . 5 ⊢ (((𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) | |
28 | 15, 15, 18, 26, 27 | syl112anc 1354 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) |
29 | 25, 28 | mpbird 249 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘)) |
30 | 6 | recnd 10468 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
31 | 3 | efcllem 15291 | . . . 4 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
32 | 30, 31 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
33 | 6, 21 | absidd 14643 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
34 | eflegeo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 < 1) | |
35 | 33, 34 | eqbrtrd 4951 | . . . . 5 ⊢ (𝜑 → (abs‘𝐴) < 1) |
36 | 30, 35, 13 | geolim 15086 | . . . 4 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴))) |
37 | seqex 13186 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ V | |
38 | ovex 7008 | . . . . 5 ⊢ (1 / (1 − 𝐴)) ∈ V | |
39 | 37, 38 | breldm 5627 | . . . 4 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
40 | 36, 39 | syl 17 | . . 3 ⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
41 | 1, 2, 5, 8, 13, 15, 29, 32, 40 | isumle 15059 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
42 | efval 15293 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | |
43 | 30, 42 | syl 17 | . 2 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
44 | expcl 13262 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
45 | 30, 44 | sylan 572 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
46 | 1, 2, 13, 45, 36 | isumclim 14972 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) |
47 | 46 | eqcomd 2785 | . 2 ⊢ (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
48 | 41, 43, 47 | 3brtr4d 4961 | 1 ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ↦ cmpt 5008 dom cdm 5407 ‘cfv 6188 (class class class)co 6976 ℂcc 10333 ℝcr 10334 0cc0 10335 1c1 10336 + caddc 10338 · cmul 10340 < clt 10474 ≤ cle 10475 − cmin 10670 / cdiv 11098 ℕcn 11439 ℕ0cn0 11707 seqcseq 13184 ↑cexp 13244 !cfa 13448 abscabs 14454 ⇝ cli 14702 Σcsu 14903 expce 15275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-pm 8209 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-n0 11708 df-z 11794 df-uz 12059 df-rp 12205 df-ico 12560 df-fz 12709 df-fzo 12850 df-fl 12977 df-seq 13185 df-exp 13245 df-fac 13449 df-hash 13506 df-shft 14287 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-limsup 14689 df-clim 14706 df-rlim 14707 df-sum 14904 df-ef 15281 |
This theorem is referenced by: birthdaylem3 25233 logdiflbnd 25274 emcllem2 25276 |
Copyright terms: Public domain | W3C validator |