MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efeq1 Structured version   Visualization version   GIF version

Theorem efeq1 26585
Description: A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
efeq1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))

Proof of Theorem efeq1
StepHypRef Expression
1 halfcl 12489 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
2 ax-icn 11212 . . . . 5 i ∈ ℂ
3 ine0 11696 . . . . 5 i ≠ 0
4 divcl 11926 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐴 / 2) / i) ∈ ℂ)
52, 3, 4mp3an23 1452 . . . 4 ((𝐴 / 2) ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
61, 5syl 17 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
7 sineq0 26581 . . 3 (((𝐴 / 2) / i) ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
86, 7syl 17 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
9 sinval 16155 . . . . . 6 (((𝐴 / 2) / i) ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
106, 9syl 17 . . . . 5 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
11 divcan2 11928 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
122, 3, 11mp3an23 1452 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
131, 12syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
1413fveq2d 6911 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(i · ((𝐴 / 2) / i))) = (exp‘(𝐴 / 2)))
15 mulneg1 11697 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝐴 / 2) / i) ∈ ℂ) → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
162, 6, 15sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
1713negeqd 11500 . . . . . . . . 9 (𝐴 ∈ ℂ → -(i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1816, 17eqtrd 2775 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1918fveq2d 6911 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(-i · ((𝐴 / 2) / i))) = (exp‘-(𝐴 / 2)))
2014, 19oveq12d 7449 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) = ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))))
2120oveq1d 7446 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2210, 21eqtrd 2775 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2322eqeq1d 2737 . . 3 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0))
24 efcl 16115 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
251, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
261negcld 11605 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 2) ∈ ℂ)
27 efcl 16115 . . . . . 6 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2826, 27syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2925, 28subcld 11618 . . . 4 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ)
30 2cn 12339 . . . . . 6 2 ∈ ℂ
3130, 2mulcli 11266 . . . . 5 (2 · i) ∈ ℂ
32 2ne0 12368 . . . . . 6 2 ≠ 0
3330, 2, 32, 3mulne0i 11904 . . . . 5 (2 · i) ≠ 0
34 diveq0 11930 . . . . 5 ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3531, 33, 34mp3an23 1452 . . . 4 (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3629, 35syl 17 . . 3 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
37 efne0 16130 . . . . . . . 8 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3826, 37syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3925, 28, 28, 38divsubdird 12080 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))))
40 efsub 16133 . . . . . . . . 9 (((𝐴 / 2) ∈ ℂ ∧ -(𝐴 / 2) ∈ ℂ) → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
411, 26, 40syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
421, 1subnegd 11625 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = ((𝐴 / 2) + (𝐴 / 2)))
43 2halves 12492 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
4442, 43eqtrd 2775 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = 𝐴)
4544fveq2d 6911 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = (exp‘𝐴))
4641, 45eqtr3d 2777 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = (exp‘𝐴))
4728, 38dividd 12039 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = 1)
4846, 47oveq12d 7449 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))) = ((exp‘𝐴) − 1))
4939, 48eqtrd 2775 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = ((exp‘𝐴) − 1))
5049eqeq1d 2737 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘𝐴) − 1) = 0))
5129, 28, 38diveq0ad 12051 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
52 efcl 16115 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
53 ax-1cn 11211 . . . . 5 1 ∈ ℂ
54 subeq0 11533 . . . . 5 (((exp‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5552, 53, 54sylancl 586 . . . 4 (𝐴 ∈ ℂ → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5650, 51, 553bitr3d 309 . . 3 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0 ↔ (exp‘𝐴) = 1))
5723, 36, 563bitrd 305 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (exp‘𝐴) = 1))
58 2cnne0 12474 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
592, 3pm3.2i 470 . . . . . 6 (i ∈ ℂ ∧ i ≠ 0)
60 divdiv32 11973 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6158, 59, 60mp3an23 1452 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6261oveq1d 7446 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (((𝐴 / i) / 2) / π))
63 divcl 11926 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) ∈ ℂ)
642, 3, 63mp3an23 1452 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) ∈ ℂ)
65 picn 26516 . . . . . . . 8 π ∈ ℂ
66 pire 26515 . . . . . . . . 9 π ∈ ℝ
67 pipos 26517 . . . . . . . . 9 0 < π
6866, 67gt0ne0ii 11797 . . . . . . . 8 π ≠ 0
6965, 68pm3.2i 470 . . . . . . 7 (π ∈ ℂ ∧ π ≠ 0)
70 divdiv1 11976 . . . . . . 7 (((𝐴 / i) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7158, 69, 70mp3an23 1452 . . . . . 6 ((𝐴 / i) ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7264, 71syl 17 . . . . 5 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7330, 65mulcli 11266 . . . . . . 7 (2 · π) ∈ ℂ
7430, 65, 32, 68mulne0i 11904 . . . . . . 7 (2 · π) ≠ 0
7573, 74pm3.2i 470 . . . . . 6 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
76 divdiv1 11976 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7759, 75, 76mp3an23 1452 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7872, 77eqtrd 2775 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = (𝐴 / (i · (2 · π))))
7962, 78eqtrd 2775 . . 3 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (𝐴 / (i · (2 · π))))
8079eleq1d 2824 . 2 (𝐴 ∈ ℂ → ((((𝐴 / 2) / i) / π) ∈ ℤ ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
818, 57, 803bitr3d 309 1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  cz 12611  expce 16094  sincsin 16096  πcpi 16099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  efif1olem4  26602  eflogeq  26659  root1eq1  26813  ang180lem1  26867  ef11d  42354  proot1ex  43185
  Copyright terms: Public domain W3C validator