MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efeq1 Structured version   Visualization version   GIF version

Theorem efeq1 26453
Description: A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
efeq1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))

Proof of Theorem efeq1
StepHypRef Expression
1 halfcl 12368 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
2 ax-icn 11087 . . . . 5 i ∈ ℂ
3 ine0 11573 . . . . 5 i ≠ 0
4 divcl 11803 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐴 / 2) / i) ∈ ℂ)
52, 3, 4mp3an23 1455 . . . 4 ((𝐴 / 2) ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
61, 5syl 17 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
7 sineq0 26449 . . 3 (((𝐴 / 2) / i) ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
86, 7syl 17 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
9 sinval 16049 . . . . . 6 (((𝐴 / 2) / i) ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
106, 9syl 17 . . . . 5 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
11 divcan2 11805 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
122, 3, 11mp3an23 1455 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
131, 12syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
1413fveq2d 6830 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(i · ((𝐴 / 2) / i))) = (exp‘(𝐴 / 2)))
15 mulneg1 11574 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝐴 / 2) / i) ∈ ℂ) → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
162, 6, 15sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
1713negeqd 11375 . . . . . . . . 9 (𝐴 ∈ ℂ → -(i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1816, 17eqtrd 2764 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1918fveq2d 6830 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(-i · ((𝐴 / 2) / i))) = (exp‘-(𝐴 / 2)))
2014, 19oveq12d 7371 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) = ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))))
2120oveq1d 7368 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2210, 21eqtrd 2764 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2322eqeq1d 2731 . . 3 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0))
24 efcl 16007 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
251, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
261negcld 11480 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 2) ∈ ℂ)
27 efcl 16007 . . . . . 6 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2826, 27syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2925, 28subcld 11493 . . . 4 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ)
30 2cn 12221 . . . . . 6 2 ∈ ℂ
3130, 2mulcli 11141 . . . . 5 (2 · i) ∈ ℂ
32 2ne0 12250 . . . . . 6 2 ≠ 0
3330, 2, 32, 3mulne0i 11781 . . . . 5 (2 · i) ≠ 0
34 diveq0 11807 . . . . 5 ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3531, 33, 34mp3an23 1455 . . . 4 (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3629, 35syl 17 . . 3 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
37 efne0 16023 . . . . . . . 8 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3826, 37syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3925, 28, 28, 38divsubdird 11957 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))))
40 efsub 16027 . . . . . . . . 9 (((𝐴 / 2) ∈ ℂ ∧ -(𝐴 / 2) ∈ ℂ) → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
411, 26, 40syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
421, 1subnegd 11500 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = ((𝐴 / 2) + (𝐴 / 2)))
43 2halves 12360 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
4442, 43eqtrd 2764 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = 𝐴)
4544fveq2d 6830 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = (exp‘𝐴))
4641, 45eqtr3d 2766 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = (exp‘𝐴))
4728, 38dividd 11916 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = 1)
4846, 47oveq12d 7371 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))) = ((exp‘𝐴) − 1))
4939, 48eqtrd 2764 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = ((exp‘𝐴) − 1))
5049eqeq1d 2731 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘𝐴) − 1) = 0))
5129, 28, 38diveq0ad 11928 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
52 efcl 16007 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
53 ax-1cn 11086 . . . . 5 1 ∈ ℂ
54 subeq0 11408 . . . . 5 (((exp‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5552, 53, 54sylancl 586 . . . 4 (𝐴 ∈ ℂ → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5650, 51, 553bitr3d 309 . . 3 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0 ↔ (exp‘𝐴) = 1))
5723, 36, 563bitrd 305 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (exp‘𝐴) = 1))
58 2cnne0 12351 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
592, 3pm3.2i 470 . . . . . 6 (i ∈ ℂ ∧ i ≠ 0)
60 divdiv32 11850 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6158, 59, 60mp3an23 1455 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6261oveq1d 7368 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (((𝐴 / i) / 2) / π))
63 divcl 11803 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) ∈ ℂ)
642, 3, 63mp3an23 1455 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) ∈ ℂ)
65 picn 26383 . . . . . . . 8 π ∈ ℂ
66 pire 26382 . . . . . . . . 9 π ∈ ℝ
67 pipos 26384 . . . . . . . . 9 0 < π
6866, 67gt0ne0ii 11674 . . . . . . . 8 π ≠ 0
6965, 68pm3.2i 470 . . . . . . 7 (π ∈ ℂ ∧ π ≠ 0)
70 divdiv1 11853 . . . . . . 7 (((𝐴 / i) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7158, 69, 70mp3an23 1455 . . . . . 6 ((𝐴 / i) ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7264, 71syl 17 . . . . 5 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7330, 65mulcli 11141 . . . . . . 7 (2 · π) ∈ ℂ
7430, 65, 32, 68mulne0i 11781 . . . . . . 7 (2 · π) ≠ 0
7573, 74pm3.2i 470 . . . . . 6 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
76 divdiv1 11853 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7759, 75, 76mp3an23 1455 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7872, 77eqtrd 2764 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = (𝐴 / (i · (2 · π))))
7962, 78eqtrd 2764 . . 3 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (𝐴 / (i · (2 · π))))
8079eleq1d 2813 . 2 (𝐴 ∈ ℂ → ((((𝐴 / 2) / i) / π) ∈ ℤ ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
818, 57, 803bitr3d 309 1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  cz 12489  expce 15986  sincsin 15988  πcpi 15991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  efif1olem4  26470  eflogeq  26527  root1eq1  26681  ang180lem1  26735  cos9thpiminplylem3  33753  ef11d  42315  proot1ex  43172
  Copyright terms: Public domain W3C validator