MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efeq1 Structured version   Visualization version   GIF version

Theorem efeq1 25884
Description: A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
efeq1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))

Proof of Theorem efeq1
StepHypRef Expression
1 halfcl 12378 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
2 ax-icn 11110 . . . . 5 i ∈ ℂ
3 ine0 11590 . . . . 5 i ≠ 0
4 divcl 11819 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐴 / 2) / i) ∈ ℂ)
52, 3, 4mp3an23 1453 . . . 4 ((𝐴 / 2) ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
61, 5syl 17 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
7 sineq0 25880 . . 3 (((𝐴 / 2) / i) ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
86, 7syl 17 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
9 sinval 16004 . . . . . 6 (((𝐴 / 2) / i) ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
106, 9syl 17 . . . . 5 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
11 divcan2 11821 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
122, 3, 11mp3an23 1453 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
131, 12syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
1413fveq2d 6846 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(i · ((𝐴 / 2) / i))) = (exp‘(𝐴 / 2)))
15 mulneg1 11591 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝐴 / 2) / i) ∈ ℂ) → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
162, 6, 15sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
1713negeqd 11395 . . . . . . . . 9 (𝐴 ∈ ℂ → -(i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1816, 17eqtrd 2776 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1918fveq2d 6846 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(-i · ((𝐴 / 2) / i))) = (exp‘-(𝐴 / 2)))
2014, 19oveq12d 7375 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) = ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))))
2120oveq1d 7372 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2210, 21eqtrd 2776 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2322eqeq1d 2738 . . 3 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0))
24 efcl 15965 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
251, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
261negcld 11499 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 2) ∈ ℂ)
27 efcl 15965 . . . . . 6 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2826, 27syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2925, 28subcld 11512 . . . 4 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ)
30 2cn 12228 . . . . . 6 2 ∈ ℂ
3130, 2mulcli 11162 . . . . 5 (2 · i) ∈ ℂ
32 2ne0 12257 . . . . . 6 2 ≠ 0
3330, 2, 32, 3mulne0i 11798 . . . . 5 (2 · i) ≠ 0
34 diveq0 11823 . . . . 5 ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3531, 33, 34mp3an23 1453 . . . 4 (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3629, 35syl 17 . . 3 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
37 efne0 15979 . . . . . . . 8 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3826, 37syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3925, 28, 28, 38divsubdird 11970 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))))
40 efsub 15982 . . . . . . . . 9 (((𝐴 / 2) ∈ ℂ ∧ -(𝐴 / 2) ∈ ℂ) → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
411, 26, 40syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
421, 1subnegd 11519 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = ((𝐴 / 2) + (𝐴 / 2)))
43 2halves 12381 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
4442, 43eqtrd 2776 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = 𝐴)
4544fveq2d 6846 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = (exp‘𝐴))
4641, 45eqtr3d 2778 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = (exp‘𝐴))
4728, 38dividd 11929 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = 1)
4846, 47oveq12d 7375 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))) = ((exp‘𝐴) − 1))
4939, 48eqtrd 2776 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = ((exp‘𝐴) − 1))
5049eqeq1d 2738 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘𝐴) − 1) = 0))
5129, 28, 38diveq0ad 11941 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
52 efcl 15965 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
53 ax-1cn 11109 . . . . 5 1 ∈ ℂ
54 subeq0 11427 . . . . 5 (((exp‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5552, 53, 54sylancl 586 . . . 4 (𝐴 ∈ ℂ → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5650, 51, 553bitr3d 308 . . 3 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0 ↔ (exp‘𝐴) = 1))
5723, 36, 563bitrd 304 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (exp‘𝐴) = 1))
58 2cnne0 12363 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
592, 3pm3.2i 471 . . . . . 6 (i ∈ ℂ ∧ i ≠ 0)
60 divdiv32 11863 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6158, 59, 60mp3an23 1453 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6261oveq1d 7372 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (((𝐴 / i) / 2) / π))
63 divcl 11819 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) ∈ ℂ)
642, 3, 63mp3an23 1453 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) ∈ ℂ)
65 picn 25816 . . . . . . . 8 π ∈ ℂ
66 pire 25815 . . . . . . . . 9 π ∈ ℝ
67 pipos 25817 . . . . . . . . 9 0 < π
6866, 67gt0ne0ii 11691 . . . . . . . 8 π ≠ 0
6965, 68pm3.2i 471 . . . . . . 7 (π ∈ ℂ ∧ π ≠ 0)
70 divdiv1 11866 . . . . . . 7 (((𝐴 / i) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7158, 69, 70mp3an23 1453 . . . . . 6 ((𝐴 / i) ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7264, 71syl 17 . . . . 5 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7330, 65mulcli 11162 . . . . . . 7 (2 · π) ∈ ℂ
7430, 65, 32, 68mulne0i 11798 . . . . . . 7 (2 · π) ≠ 0
7573, 74pm3.2i 471 . . . . . 6 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
76 divdiv1 11866 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7759, 75, 76mp3an23 1453 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7872, 77eqtrd 2776 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = (𝐴 / (i · (2 · π))))
7962, 78eqtrd 2776 . . 3 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (𝐴 / (i · (2 · π))))
8079eleq1d 2822 . 2 (𝐴 ∈ ℂ → ((((𝐴 / 2) / i) / π) ∈ ℤ ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
818, 57, 803bitr3d 308 1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cz 12499  expce 15944  sincsin 15946  πcpi 15949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  efif1olem4  25901  eflogeq  25957  root1eq1  26108  ang180lem1  26159  proot1ex  41514
  Copyright terms: Public domain W3C validator