MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efeq1 Structured version   Visualization version   GIF version

Theorem efeq1 26413
Description: A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
efeq1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))

Proof of Theorem efeq1
StepHypRef Expression
1 halfcl 12384 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
2 ax-icn 11103 . . . . 5 i ∈ ℂ
3 ine0 11589 . . . . 5 i ≠ 0
4 divcl 11819 . . . . 5 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐴 / 2) / i) ∈ ℂ)
52, 3, 4mp3an23 1455 . . . 4 ((𝐴 / 2) ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
61, 5syl 17 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) ∈ ℂ)
7 sineq0 26409 . . 3 (((𝐴 / 2) / i) ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
86, 7syl 17 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((𝐴 / 2) / i) / π) ∈ ℤ))
9 sinval 16066 . . . . . 6 (((𝐴 / 2) / i) ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
106, 9syl 17 . . . . 5 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)))
11 divcan2 11821 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
122, 3, 11mp3an23 1455 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
131, 12syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((𝐴 / 2) / i)) = (𝐴 / 2))
1413fveq2d 6844 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(i · ((𝐴 / 2) / i))) = (exp‘(𝐴 / 2)))
15 mulneg1 11590 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((𝐴 / 2) / i) ∈ ℂ) → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
162, 6, 15sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(i · ((𝐴 / 2) / i)))
1713negeqd 11391 . . . . . . . . 9 (𝐴 ∈ ℂ → -(i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1816, 17eqtrd 2764 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴 / 2) / i)) = -(𝐴 / 2))
1918fveq2d 6844 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(-i · ((𝐴 / 2) / i))) = (exp‘-(𝐴 / 2)))
2014, 19oveq12d 7387 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) = ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))))
2120oveq1d 7384 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · ((𝐴 / 2) / i))) − (exp‘(-i · ((𝐴 / 2) / i)))) / (2 · i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2210, 21eqtrd 2764 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / 2) / i)) = (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)))
2322eqeq1d 2731 . . 3 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0))
24 efcl 16024 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
251, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 / 2)) ∈ ℂ)
261negcld 11496 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 2) ∈ ℂ)
27 efcl 16024 . . . . . 6 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2826, 27syl 17 . . . . 5 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ∈ ℂ)
2925, 28subcld 11509 . . . 4 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ)
30 2cn 12237 . . . . . 6 2 ∈ ℂ
3130, 2mulcli 11157 . . . . 5 (2 · i) ∈ ℂ
32 2ne0 12266 . . . . . 6 2 ≠ 0
3330, 2, 32, 3mulne0i 11797 . . . . 5 (2 · i) ≠ 0
34 diveq0 11823 . . . . 5 ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3531, 33, 34mp3an23 1455 . . . 4 (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
3629, 35syl 17 . . 3 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (2 · i)) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
37 efne0 16040 . . . . . . . 8 (-(𝐴 / 2) ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3826, 37syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘-(𝐴 / 2)) ≠ 0)
3925, 28, 28, 38divsubdird 11973 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))))
40 efsub 16044 . . . . . . . . 9 (((𝐴 / 2) ∈ ℂ ∧ -(𝐴 / 2) ∈ ℂ) → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
411, 26, 40syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))))
421, 1subnegd 11516 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = ((𝐴 / 2) + (𝐴 / 2)))
43 2halves 12376 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
4442, 43eqtrd 2764 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 / 2) − -(𝐴 / 2)) = 𝐴)
4544fveq2d 6844 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘((𝐴 / 2) − -(𝐴 / 2))) = (exp‘𝐴))
4641, 45eqtr3d 2766 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = (exp‘𝐴))
4728, 38dividd 11932 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2))) = 1)
4846, 47oveq12d 7387 . . . . . 6 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) / (exp‘-(𝐴 / 2))) − ((exp‘-(𝐴 / 2)) / (exp‘-(𝐴 / 2)))) = ((exp‘𝐴) − 1))
4939, 48eqtrd 2764 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = ((exp‘𝐴) − 1))
5049eqeq1d 2731 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘𝐴) − 1) = 0))
5129, 28, 38diveq0ad 11944 . . . 4 (𝐴 ∈ ℂ → ((((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) / (exp‘-(𝐴 / 2))) = 0 ↔ ((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0))
52 efcl 16024 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
53 ax-1cn 11102 . . . . 5 1 ∈ ℂ
54 subeq0 11424 . . . . 5 (((exp‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5552, 53, 54sylancl 586 . . . 4 (𝐴 ∈ ℂ → (((exp‘𝐴) − 1) = 0 ↔ (exp‘𝐴) = 1))
5650, 51, 553bitr3d 309 . . 3 (𝐴 ∈ ℂ → (((exp‘(𝐴 / 2)) − (exp‘-(𝐴 / 2))) = 0 ↔ (exp‘𝐴) = 1))
5723, 36, 563bitrd 305 . 2 (𝐴 ∈ ℂ → ((sin‘((𝐴 / 2) / i)) = 0 ↔ (exp‘𝐴) = 1))
58 2cnne0 12367 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
592, 3pm3.2i 470 . . . . . 6 (i ∈ ℂ ∧ i ≠ 0)
60 divdiv32 11866 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6158, 59, 60mp3an23 1455 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / 2) / i) = ((𝐴 / i) / 2))
6261oveq1d 7384 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (((𝐴 / i) / 2) / π))
63 divcl 11819 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) ∈ ℂ)
642, 3, 63mp3an23 1455 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) ∈ ℂ)
65 picn 26343 . . . . . . . 8 π ∈ ℂ
66 pire 26342 . . . . . . . . 9 π ∈ ℝ
67 pipos 26344 . . . . . . . . 9 0 < π
6866, 67gt0ne0ii 11690 . . . . . . . 8 π ≠ 0
6965, 68pm3.2i 470 . . . . . . 7 (π ∈ ℂ ∧ π ≠ 0)
70 divdiv1 11869 . . . . . . 7 (((𝐴 / i) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7158, 69, 70mp3an23 1455 . . . . . 6 ((𝐴 / i) ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7264, 71syl 17 . . . . 5 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = ((𝐴 / i) / (2 · π)))
7330, 65mulcli 11157 . . . . . . 7 (2 · π) ∈ ℂ
7430, 65, 32, 68mulne0i 11797 . . . . . . 7 (2 · π) ≠ 0
7573, 74pm3.2i 470 . . . . . 6 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
76 divdiv1 11869 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7759, 75, 76mp3an23 1455 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / i) / (2 · π)) = (𝐴 / (i · (2 · π))))
7872, 77eqtrd 2764 . . . 4 (𝐴 ∈ ℂ → (((𝐴 / i) / 2) / π) = (𝐴 / (i · (2 · π))))
7962, 78eqtrd 2764 . . 3 (𝐴 ∈ ℂ → (((𝐴 / 2) / i) / π) = (𝐴 / (i · (2 · π))))
8079eleq1d 2813 . 2 (𝐴 ∈ ℂ → ((((𝐴 / 2) / i) / π) ∈ ℤ ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
818, 57, 803bitr3d 309 1 (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  cz 12505  expce 16003  sincsin 16005  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  efif1olem4  26430  eflogeq  26487  root1eq1  26641  ang180lem1  26695  cos9thpiminplylem3  33747  ef11d  42300  proot1ex  43158
  Copyright terms: Public domain W3C validator