MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Structured version   Visualization version   GIF version

Theorem slwhash 18801
Description: A sylow subgroup has cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
slwhash.3 (𝜑𝑋 ∈ Fin)
slwhash.4 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
Assertion
Ref Expression
slwhash (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))

Proof of Theorem slwhash
Dummy variables 𝑔 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3 𝑋 = (Base‘𝐺)
2 slwhash.4 . . . . 5 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
3 slwsubg 18787 . . . . 5 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
42, 3syl 17 . . . 4 (𝜑𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 18336 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 slwhash.3 . . 3 (𝜑𝑋 ∈ Fin)
8 slwprm 18786 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ)
92, 8syl 17 . . 3 (𝜑𝑃 ∈ ℙ)
101grpbn0 18184 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
116, 10syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
12 hashnncl 13762 . . . . . 6 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
137, 12syl 17 . . . . 5 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1411, 13mpbird 260 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℕ)
159, 14pccld 16227 . . 3 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
16 pcdvds 16240 . . . 4 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
179, 14, 16syl2anc 588 . . 3 (𝜑 → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
181, 6, 7, 9, 15, 17sylow1 18780 . 2 (𝜑 → ∃𝑘 ∈ (SubGrp‘𝐺)(♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
197adantr 485 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
204adantr 485 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
21 simprl 771 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑘 ∈ (SubGrp‘𝐺))
22 eqid 2759 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2759 . . . . . . 7 (𝐺s 𝐻) = (𝐺s 𝐻)
2423slwpgp 18790 . . . . . 6 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐻))
252, 24syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐻))
2625adantr 485 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
27 simprr 773 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
28 eqid 2759 . . . 4 (-g𝐺) = (-g𝐺)
291, 19, 20, 21, 22, 26, 27, 28sylow2b 18800 . . 3 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
30 simprr 773 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
312ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
3231, 8syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 ∈ ℙ)
3315ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
3421adantr 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ (SubGrp‘𝐺))
35 simprl 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑔𝑋)
36 eqid 2759 . . . . . . . . . . . . 13 (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))
371, 22, 28, 36conjsubg 18442 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
3834, 35, 37syl2anc 588 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
39 eqid 2759 . . . . . . . . . . . 12 (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4039subgbas 18335 . . . . . . . . . . 11 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4138, 40syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4241fveq2d 6655 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))))
431, 22, 28, 36conjsubgen 18443 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4434, 35, 43syl2anc 588 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
457ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑋 ∈ Fin)
461subgss 18332 . . . . . . . . . . . . . 14 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
4734, 46syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘𝑋)
4845, 47ssfid 8755 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ Fin)
491subgss 18332 . . . . . . . . . . . . . 14 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5038, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5145, 50ssfid 8755 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin)
52 hashen 13742 . . . . . . . . . . . 12 ((𝑘 ∈ Fin ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5348, 51, 52syl2anc 588 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5444, 53mpbird 260 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
55 simplrr 778 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5654, 55eqtr3d 2796 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5742, 56eqtr3d 2796 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
58 oveq2 7151 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5958rspceeqv 3554 . . . . . . . 8 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6033, 57, 59syl2anc 588 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6139subggrp 18334 . . . . . . . . 9 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6238, 61syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6341, 51eqeltrrd 2852 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin)
64 eqid 2759 . . . . . . . . 9 (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6564pgpfi 18782 . . . . . . . 8 (((𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp ∧ (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6662, 63, 65syl2anc 588 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6732, 60, 66mpbir2and 713 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6839slwispgp 18788 . . . . . . 7 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6931, 38, 68syl2anc 588 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7030, 67, 69mpbi2and 712 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
7170fveq2d 6655 . . . 4 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7271, 56eqtrd 2794 . . 3 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7329, 72rexlimddv 3213 . 2 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7418, 73rexlimddv 3213 1 (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wne 2949  wrex 3069  wss 3854  c0 4221   class class class wbr 5025  cmpt 5105  ran crn 5518  cfv 6328  (class class class)co 7143  cen 8517  Fincfn 8520  cn 11659  0cn0 11919  cexp 13464  chash 13725  cdvds 15640  cprime 16052   pCnt cpc 16213  Basecbs 16526  s cress 16527  +gcplusg 16608  Grpcgrp 18154  -gcsg 18156  SubGrpcsubg 18325   pGrp cpgp 18706   pSyl cslw 18707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-disj 4991  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-sup 8924  df-inf 8925  df-oi 8992  df-dju 9348  df-card 9386  df-acn 9389  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-xnn0 11992  df-z 12006  df-uz 12268  df-q 12374  df-rp 12416  df-fz 12925  df-fzo 13068  df-fl 13196  df-mod 13272  df-seq 13404  df-exp 13465  df-fac 13669  df-bc 13698  df-hash 13726  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-clim 14878  df-sum 15076  df-dvds 15641  df-gcd 15879  df-prm 16053  df-pc 16214  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-0g 16758  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-grp 18157  df-minusg 18158  df-sbg 18159  df-mulg 18277  df-subg 18328  df-eqg 18330  df-ghm 18408  df-ga 18472  df-od 18708  df-pgp 18710  df-slw 18711
This theorem is referenced by:  fislw  18802  sylow2  18803  sylow3lem4  18807
  Copyright terms: Public domain W3C validator