Step | Hyp | Ref
| Expression |
1 | | fislw.1 |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
2 | | slwhash.4 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) |
3 | | slwsubg 19215 |
. . . . 5
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
5 | | subgrcl 18760 |
. . . 4
⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | | slwhash.3 |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
8 | | slwprm 19214 |
. . . 4
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ) |
9 | 2, 8 | syl 17 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
10 | 1 | grpbn0 18608 |
. . . . . 6
⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
11 | 6, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ ∅) |
12 | | hashnncl 14081 |
. . . . . 6
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) |
13 | 7, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
14 | 11, 13 | mpbird 256 |
. . . 4
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ) |
15 | 9, 14 | pccld 16551 |
. . 3
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈
ℕ0) |
16 | | pcdvds 16565 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧
(♯‘𝑋) ∈
ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋)) |
17 | 9, 14, 16 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋)) |
18 | 1, 6, 7, 9, 15, 17 | sylow1 19208 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ (SubGrp‘𝐺)(♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
19 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin) |
20 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺)) |
21 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑘 ∈ (SubGrp‘𝐺)) |
22 | | eqid 2738 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
23 | | eqid 2738 |
. . . . . . 7
⊢ (𝐺 ↾s 𝐻) = (𝐺 ↾s 𝐻) |
24 | 23 | slwpgp 19218 |
. . . . . 6
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
25 | 2, 24 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
26 | 25 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
27 | | simprr 770 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
28 | | eqid 2738 |
. . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) |
29 | 1, 19, 20, 21, 22, 26, 27, 28 | sylow2b 19228 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) |
30 | | simprr 770 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) |
31 | 2 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝐻 ∈ (𝑃 pSyl 𝐺)) |
32 | 31, 8 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑃 ∈ ℙ) |
33 | 15 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (𝑃 pCnt (♯‘𝑋)) ∈
ℕ0) |
34 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ∈ (SubGrp‘𝐺)) |
35 | | simprl 768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑔 ∈ 𝑋) |
36 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) = (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) |
37 | 1, 22, 28, 36 | conjsubg 18866 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺)) |
38 | 34, 35, 37 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺)) |
39 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) = (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) |
40 | 39 | subgbas 18759 |
. . . . . . . . . . 11
⊢ (ran
(𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) = (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) |
41 | 38, 40 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) = (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) |
42 | 41 | fveq2d 6778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) = (♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))))) |
43 | 1, 22, 28, 36 | conjsubgen 18867 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) |
44 | 34, 35, 43 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) |
45 | 7 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑋 ∈ Fin) |
46 | 1 | subgss 18756 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (SubGrp‘𝐺) → 𝑘 ⊆ 𝑋) |
47 | 34, 46 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ⊆ 𝑋) |
48 | 45, 47 | ssfid 9042 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ∈ Fin) |
49 | 1 | subgss 18756 |
. . . . . . . . . . . . . 14
⊢ (ran
(𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ⊆ 𝑋) |
50 | 38, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ⊆ 𝑋) |
51 | 45, 50 | ssfid 9042 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ Fin) |
52 | | hashen 14061 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ Fin ∧ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ Fin) → ((♯‘𝑘) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
53 | 48, 51, 52 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ((♯‘𝑘) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
54 | 44, 53 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝑘) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
55 | | simplrr 775 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
56 | 54, 55 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
57 | 42, 56 | eqtr3d 2780 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
58 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
59 | 58 | rspceeqv 3575 |
. . . . . . . 8
⊢ (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0
∧ (♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)) |
60 | 33, 57, 59 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)) |
61 | 39 | subggrp 18758 |
. . . . . . . . 9
⊢ (ran
(𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺) → (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ∈ Grp) |
62 | 38, 61 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ∈ Grp) |
63 | 41, 51 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ∈ Fin) |
64 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝐺
↾s ran (𝑥
∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) = (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
65 | 64 | pgpfi 19210 |
. . . . . . . 8
⊢ (((𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ∈ Grp ∧ (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ∈ Fin) → (𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)))) |
66 | 62, 63, 65 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)))) |
67 | 32, 60, 66 | mpbir2and 710 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
68 | 39 | slwispgp 19216 |
. . . . . . 7
⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
69 | 31, 38, 68 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ((𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
70 | 30, 67, 69 | mpbi2and 709 |
. . . . 5
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝐻 = ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) |
71 | 70 | fveq2d 6778 |
. . . 4
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝐻) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) |
72 | 71, 56 | eqtrd 2778 |
. . 3
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
73 | 29, 72 | rexlimddv 3220 |
. 2
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
74 | 18, 73 | rexlimddv 3220 |
1
⊢ (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |