| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fislw.1 | . . 3
⊢ 𝑋 = (Base‘𝐺) | 
| 2 |  | slwhash.4 | . . . . 5
⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) | 
| 3 |  | slwsubg 19629 | . . . . 5
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | 
| 4 | 2, 3 | syl 17 | . . . 4
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) | 
| 5 |  | subgrcl 19150 | . . . 4
⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | 
| 6 | 4, 5 | syl 17 | . . 3
⊢ (𝜑 → 𝐺 ∈ Grp) | 
| 7 |  | slwhash.3 | . . 3
⊢ (𝜑 → 𝑋 ∈ Fin) | 
| 8 |  | slwprm 19628 | . . . 4
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ) | 
| 9 | 2, 8 | syl 17 | . . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 10 | 1 | grpbn0 18985 | . . . . . 6
⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) | 
| 11 | 6, 10 | syl 17 | . . . . 5
⊢ (𝜑 → 𝑋 ≠ ∅) | 
| 12 |  | hashnncl 14406 | . . . . . 6
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) | 
| 13 | 7, 12 | syl 17 | . . . . 5
⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | 
| 14 | 11, 13 | mpbird 257 | . . . 4
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ) | 
| 15 | 9, 14 | pccld 16889 | . . 3
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈
ℕ0) | 
| 16 |  | pcdvds 16903 | . . . 4
⊢ ((𝑃 ∈ ℙ ∧
(♯‘𝑋) ∈
ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋)) | 
| 17 | 9, 14, 16 | syl2anc 584 | . . 3
⊢ (𝜑 → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋)) | 
| 18 | 1, 6, 7, 9, 15, 17 | sylow1 19622 | . 2
⊢ (𝜑 → ∃𝑘 ∈ (SubGrp‘𝐺)(♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 19 | 7 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin) | 
| 20 | 4 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺)) | 
| 21 |  | simprl 770 | . . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑘 ∈ (SubGrp‘𝐺)) | 
| 22 |  | eqid 2736 | . . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 23 |  | eqid 2736 | . . . . . . 7
⊢ (𝐺 ↾s 𝐻) = (𝐺 ↾s 𝐻) | 
| 24 | 23 | slwpgp 19632 | . . . . . 6
⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺 ↾s 𝐻)) | 
| 25 | 2, 24 | syl 17 | . . . . 5
⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) | 
| 26 | 25 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺 ↾s 𝐻)) | 
| 27 |  | simprr 772 | . . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 28 |  | eqid 2736 | . . . 4
⊢
(-g‘𝐺) = (-g‘𝐺) | 
| 29 | 1, 19, 20, 21, 22, 26, 27, 28 | sylow2b 19642 | . . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) | 
| 30 |  | simprr 772 | . . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) | 
| 31 | 2 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝐻 ∈ (𝑃 pSyl 𝐺)) | 
| 32 | 31, 8 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑃 ∈ ℙ) | 
| 33 | 15 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (𝑃 pCnt (♯‘𝑋)) ∈
ℕ0) | 
| 34 | 21 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ∈ (SubGrp‘𝐺)) | 
| 35 |  | simprl 770 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑔 ∈ 𝑋) | 
| 36 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) = (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) | 
| 37 | 1, 22, 28, 36 | conjsubg 19269 | . . . . . . . . . . . 12
⊢ ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺)) | 
| 38 | 34, 35, 37 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺)) | 
| 39 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) = (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) | 
| 40 | 39 | subgbas 19149 | . . . . . . . . . . 11
⊢ (ran
(𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) = (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) | 
| 41 | 38, 40 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) = (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) | 
| 42 | 41 | fveq2d 6909 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) = (♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))))) | 
| 43 | 1, 22, 28, 36 | conjsubgen 19270 | . . . . . . . . . . . 12
⊢ ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) | 
| 44 | 34, 35, 43 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) | 
| 45 | 7 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑋 ∈ Fin) | 
| 46 | 1 | subgss 19146 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (SubGrp‘𝐺) → 𝑘 ⊆ 𝑋) | 
| 47 | 34, 46 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ⊆ 𝑋) | 
| 48 | 45, 47 | ssfid 9302 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑘 ∈ Fin) | 
| 49 | 1 | subgss 19146 | . . . . . . . . . . . . . 14
⊢ (ran
(𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ⊆ 𝑋) | 
| 50 | 38, 49 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ⊆ 𝑋) | 
| 51 | 45, 50 | ssfid 9302 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ Fin) | 
| 52 |  | hashen 14387 | . . . . . . . . . . . 12
⊢ ((𝑘 ∈ Fin ∧ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ Fin) → ((♯‘𝑘) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 53 | 48, 51, 52 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ((♯‘𝑘) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 54 | 44, 53 | mpbird 257 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝑘) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 55 |  | simplrr 777 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 56 | 54, 55 | eqtr3d 2778 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 57 | 42, 56 | eqtr3d 2778 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 58 |  | oveq2 7440 | . . . . . . . . 9
⊢ (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 59 | 58 | rspceeqv 3644 | . . . . . . . 8
⊢ (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0
∧ (♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)) | 
| 60 | 33, 57, 59 | syl2anc 584 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)) | 
| 61 | 39 | subggrp 19148 | . . . . . . . . 9
⊢ (ran
(𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺) → (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ∈ Grp) | 
| 62 | 38, 61 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ∈ Grp) | 
| 63 | 41, 51 | eqeltrrd 2841 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ∈ Fin) | 
| 64 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘(𝐺
↾s ran (𝑥
∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) = (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 65 | 64 | pgpfi 19624 | . . . . . . . 8
⊢ (((𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ∈ Grp ∧ (Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ∈ Fin) → (𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)))) | 
| 66 | 62, 63, 65 | syl2anc 584 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0
(♯‘(Base‘(𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))))) = (𝑃↑𝑛)))) | 
| 67 | 32, 60, 66 | mpbir2and 713 | . . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 68 | 39 | slwispgp 19630 | . . . . . . 7
⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 69 | 31, 38, 68 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → ((𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺 ↾s ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 70 | 30, 67, 69 | mpbi2and 712 | . . . . 5
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → 𝐻 = ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔))) | 
| 71 | 70 | fveq2d 6909 | . . . 4
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝐻) = (♯‘ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) | 
| 72 | 71, 56 | eqtrd 2776 | . . 3
⊢ (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝑘 ↦ ((𝑔(+g‘𝐺)𝑥)(-g‘𝐺)𝑔)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 73 | 29, 72 | rexlimddv 3160 | . 2
⊢ ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) | 
| 74 | 18, 73 | rexlimddv 3160 | 1
⊢ (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |