MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Structured version   Visualization version   GIF version

Theorem slwhash 19538
Description: A sylow subgroup has cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
slwhash.3 (𝜑𝑋 ∈ Fin)
slwhash.4 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
Assertion
Ref Expression
slwhash (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))

Proof of Theorem slwhash
Dummy variables 𝑔 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3 𝑋 = (Base‘𝐺)
2 slwhash.4 . . . . 5 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
3 slwsubg 19524 . . . . 5 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
42, 3syl 17 . . . 4 (𝜑𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 19045 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 slwhash.3 . . 3 (𝜑𝑋 ∈ Fin)
8 slwprm 19523 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ)
92, 8syl 17 . . 3 (𝜑𝑃 ∈ ℙ)
101grpbn0 18880 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
116, 10syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
12 hashnncl 14307 . . . . . 6 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
137, 12syl 17 . . . . 5 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1411, 13mpbird 257 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℕ)
159, 14pccld 16797 . . 3 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
16 pcdvds 16811 . . . 4 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
179, 14, 16syl2anc 584 . . 3 (𝜑 → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
181, 6, 7, 9, 15, 17sylow1 19517 . 2 (𝜑 → ∃𝑘 ∈ (SubGrp‘𝐺)(♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
197adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
204adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
21 simprl 770 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑘 ∈ (SubGrp‘𝐺))
22 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2729 . . . . . . 7 (𝐺s 𝐻) = (𝐺s 𝐻)
2423slwpgp 19527 . . . . . 6 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐻))
252, 24syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐻))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
27 simprr 772 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
28 eqid 2729 . . . 4 (-g𝐺) = (-g𝐺)
291, 19, 20, 21, 22, 26, 27, 28sylow2b 19537 . . 3 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
30 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
312ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
3231, 8syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 ∈ ℙ)
3315ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
3421adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ (SubGrp‘𝐺))
35 simprl 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑔𝑋)
36 eqid 2729 . . . . . . . . . . . . 13 (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))
371, 22, 28, 36conjsubg 19164 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
3834, 35, 37syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
39 eqid 2729 . . . . . . . . . . . 12 (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4039subgbas 19044 . . . . . . . . . . 11 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4138, 40syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4241fveq2d 6844 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))))
431, 22, 28, 36conjsubgen 19165 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4434, 35, 43syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
457ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑋 ∈ Fin)
461subgss 19041 . . . . . . . . . . . . . 14 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
4734, 46syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘𝑋)
4845, 47ssfid 9188 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ Fin)
491subgss 19041 . . . . . . . . . . . . . 14 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5038, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5145, 50ssfid 9188 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin)
52 hashen 14288 . . . . . . . . . . . 12 ((𝑘 ∈ Fin ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5348, 51, 52syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5444, 53mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
55 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5654, 55eqtr3d 2766 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5742, 56eqtr3d 2766 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
58 oveq2 7377 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5958rspceeqv 3608 . . . . . . . 8 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6033, 57, 59syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6139subggrp 19043 . . . . . . . . 9 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6238, 61syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6341, 51eqeltrrd 2829 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin)
64 eqid 2729 . . . . . . . . 9 (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6564pgpfi 19519 . . . . . . . 8 (((𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp ∧ (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6662, 63, 65syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6732, 60, 66mpbir2and 713 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6839slwispgp 19525 . . . . . . 7 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6931, 38, 68syl2anc 584 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7030, 67, 69mpbi2and 712 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
7170fveq2d 6844 . . . 4 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7271, 56eqtrd 2764 . . 3 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7329, 72rexlimddv 3140 . 2 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7418, 73rexlimddv 3140 1 (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  cen 8892  Fincfn 8895  cn 12162  0cn0 12418  cexp 14002  chash 14271  cdvds 16198  cprime 16617   pCnt cpc 16783  Basecbs 17155  s cress 17176  +gcplusg 17196  Grpcgrp 18847  -gcsg 18849  SubGrpcsubg 19034   pGrp cpgp 19440   pSyl cslw 19441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-eqg 19039  df-ghm 19127  df-ga 19204  df-od 19442  df-pgp 19444  df-slw 19445
This theorem is referenced by:  fislw  19539  sylow2  19540  sylow3lem4  19544
  Copyright terms: Public domain W3C validator