MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Structured version   Visualization version   GIF version

Theorem slwhash 19643
Description: A sylow subgroup has cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
slwhash.3 (𝜑𝑋 ∈ Fin)
slwhash.4 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
Assertion
Ref Expression
slwhash (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))

Proof of Theorem slwhash
Dummy variables 𝑔 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3 𝑋 = (Base‘𝐺)
2 slwhash.4 . . . . 5 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
3 slwsubg 19629 . . . . 5 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
42, 3syl 17 . . . 4 (𝜑𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 19150 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 slwhash.3 . . 3 (𝜑𝑋 ∈ Fin)
8 slwprm 19628 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ)
92, 8syl 17 . . 3 (𝜑𝑃 ∈ ℙ)
101grpbn0 18985 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
116, 10syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
12 hashnncl 14406 . . . . . 6 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
137, 12syl 17 . . . . 5 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1411, 13mpbird 257 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℕ)
159, 14pccld 16889 . . 3 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
16 pcdvds 16903 . . . 4 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
179, 14, 16syl2anc 584 . . 3 (𝜑 → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
181, 6, 7, 9, 15, 17sylow1 19622 . 2 (𝜑 → ∃𝑘 ∈ (SubGrp‘𝐺)(♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
197adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
204adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
21 simprl 770 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑘 ∈ (SubGrp‘𝐺))
22 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2736 . . . . . . 7 (𝐺s 𝐻) = (𝐺s 𝐻)
2423slwpgp 19632 . . . . . 6 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐻))
252, 24syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐻))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
27 simprr 772 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
28 eqid 2736 . . . 4 (-g𝐺) = (-g𝐺)
291, 19, 20, 21, 22, 26, 27, 28sylow2b 19642 . . 3 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
30 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
312ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
3231, 8syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 ∈ ℙ)
3315ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
3421adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ (SubGrp‘𝐺))
35 simprl 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑔𝑋)
36 eqid 2736 . . . . . . . . . . . . 13 (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))
371, 22, 28, 36conjsubg 19269 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
3834, 35, 37syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
39 eqid 2736 . . . . . . . . . . . 12 (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4039subgbas 19149 . . . . . . . . . . 11 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4138, 40syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4241fveq2d 6909 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))))
431, 22, 28, 36conjsubgen 19270 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4434, 35, 43syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
457ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑋 ∈ Fin)
461subgss 19146 . . . . . . . . . . . . . 14 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
4734, 46syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘𝑋)
4845, 47ssfid 9302 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ Fin)
491subgss 19146 . . . . . . . . . . . . . 14 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5038, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5145, 50ssfid 9302 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin)
52 hashen 14387 . . . . . . . . . . . 12 ((𝑘 ∈ Fin ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5348, 51, 52syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5444, 53mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
55 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5654, 55eqtr3d 2778 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5742, 56eqtr3d 2778 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
58 oveq2 7440 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5958rspceeqv 3644 . . . . . . . 8 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6033, 57, 59syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6139subggrp 19148 . . . . . . . . 9 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6238, 61syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6341, 51eqeltrrd 2841 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin)
64 eqid 2736 . . . . . . . . 9 (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6564pgpfi 19624 . . . . . . . 8 (((𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp ∧ (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6662, 63, 65syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6732, 60, 66mpbir2and 713 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6839slwispgp 19630 . . . . . . 7 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6931, 38, 68syl2anc 584 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7030, 67, 69mpbi2and 712 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
7170fveq2d 6909 . . . 4 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7271, 56eqtrd 2776 . . 3 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7329, 72rexlimddv 3160 . 2 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7418, 73rexlimddv 3160 1 (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wrex 3069  wss 3950  c0 4332   class class class wbr 5142  cmpt 5224  ran crn 5685  cfv 6560  (class class class)co 7432  cen 8983  Fincfn 8986  cn 12267  0cn0 12528  cexp 14103  chash 14370  cdvds 16291  cprime 16709   pCnt cpc 16875  Basecbs 17248  s cress 17275  +gcplusg 17298  Grpcgrp 18952  -gcsg 18954  SubGrpcsubg 19139   pGrp cpgp 19545   pSyl cslw 19546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-dvds 16292  df-gcd 16533  df-prm 16710  df-pc 16876  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-eqg 19144  df-ghm 19232  df-ga 19309  df-od 19547  df-pgp 19549  df-slw 19550
This theorem is referenced by:  fislw  19644  sylow2  19645  sylow3lem4  19649
  Copyright terms: Public domain W3C validator