MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Structured version   Visualization version   GIF version

Theorem slwhash 19610
Description: A sylow subgroup has cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
slwhash.3 (𝜑𝑋 ∈ Fin)
slwhash.4 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
Assertion
Ref Expression
slwhash (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))

Proof of Theorem slwhash
Dummy variables 𝑔 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3 𝑋 = (Base‘𝐺)
2 slwhash.4 . . . . 5 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
3 slwsubg 19596 . . . . 5 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
42, 3syl 17 . . . 4 (𝜑𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 19119 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 slwhash.3 . . 3 (𝜑𝑋 ∈ Fin)
8 slwprm 19595 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ)
92, 8syl 17 . . 3 (𝜑𝑃 ∈ ℙ)
101grpbn0 18954 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
116, 10syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
12 hashnncl 14389 . . . . . 6 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
137, 12syl 17 . . . . 5 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1411, 13mpbird 257 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℕ)
159, 14pccld 16875 . . 3 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
16 pcdvds 16889 . . . 4 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
179, 14, 16syl2anc 584 . . 3 (𝜑 → (𝑃↑(𝑃 pCnt (♯‘𝑋))) ∥ (♯‘𝑋))
181, 6, 7, 9, 15, 17sylow1 19589 . 2 (𝜑 → ∃𝑘 ∈ (SubGrp‘𝐺)(♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
197adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
204adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
21 simprl 770 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑘 ∈ (SubGrp‘𝐺))
22 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2736 . . . . . . 7 (𝐺s 𝐻) = (𝐺s 𝐻)
2423slwpgp 19599 . . . . . 6 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐻))
252, 24syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐻))
2625adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
27 simprr 772 . . . 4 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
28 eqid 2736 . . . 4 (-g𝐺) = (-g𝐺)
291, 19, 20, 21, 22, 26, 27, 28sylow2b 19609 . . 3 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
30 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
312ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
3231, 8syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 ∈ ℙ)
3315ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
3421adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ (SubGrp‘𝐺))
35 simprl 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑔𝑋)
36 eqid 2736 . . . . . . . . . . . . 13 (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))
371, 22, 28, 36conjsubg 19238 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
3834, 35, 37syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺))
39 eqid 2736 . . . . . . . . . . . 12 (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4039subgbas 19118 . . . . . . . . . . 11 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4138, 40syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))))
4241fveq2d 6885 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))))
431, 22, 28, 36conjsubgen 19239 . . . . . . . . . . . 12 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
4434, 35, 43syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
457ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑋 ∈ Fin)
461subgss 19115 . . . . . . . . . . . . . 14 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
4734, 46syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘𝑋)
4845, 47ssfid 9278 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑘 ∈ Fin)
491subgss 19115 . . . . . . . . . . . . . 14 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5038, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ⊆ 𝑋)
5145, 50ssfid 9278 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin)
52 hashen 14370 . . . . . . . . . . . 12 ((𝑘 ∈ Fin ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ Fin) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5348, 51, 52syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ 𝑘 ≈ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
5444, 53mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
55 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5654, 55eqtr3d 2773 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5742, 56eqtr3d 2773 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
58 oveq2 7418 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
5958rspceeqv 3629 . . . . . . . 8 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6033, 57, 59syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))
6139subggrp 19117 . . . . . . . . 9 (ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6238, 61syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp)
6341, 51eqeltrrd 2836 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin)
64 eqid 2736 . . . . . . . . 9 (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) = (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6564pgpfi 19591 . . . . . . . 8 (((𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ∈ Grp ∧ (Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ∈ Fin) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6662, 63, 65syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))) = (𝑃𝑛))))
6732, 60, 66mpbir2and 713 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6839slwispgp 19597 . . . . . . 7 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
6931, 38, 68syl2anc 584 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → ((𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)) ∧ 𝑃 pGrp (𝐺s ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) ↔ 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7030, 67, 69mpbi2and 712 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → 𝐻 = ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))
7170fveq2d 6885 . . . 4 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (♯‘ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔))))
7271, 56eqtrd 2771 . . 3 (((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝑘 ↦ ((𝑔(+g𝐺)𝑥)(-g𝐺)𝑔)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7329, 72rexlimddv 3148 . 2 ((𝜑 ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7418, 73rexlimddv 3148 1 (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  wss 3931  c0 4313   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  cen 8961  Fincfn 8964  cn 12245  0cn0 12506  cexp 14084  chash 14353  cdvds 16277  cprime 16695   pCnt cpc 16861  Basecbs 17233  s cress 17256  +gcplusg 17276  Grpcgrp 18921  -gcsg 18923  SubGrpcsubg 19108   pGrp cpgp 19512   pSyl cslw 19513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-eqg 19113  df-ghm 19201  df-ga 19278  df-od 19514  df-pgp 19516  df-slw 19517
This theorem is referenced by:  fislw  19611  sylow2  19612  sylow3lem4  19616
  Copyright terms: Public domain W3C validator