MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgslw Structured version   Visualization version   GIF version

Theorem subgslw 18733
Description: A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subgslw.1 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgslw ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻))

Proof of Theorem subgslw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 slwprm 18726 . . 3 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ)
213ad2ant2 1131 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝑃 ∈ ℙ)
3 slwsubg 18727 . . . 4 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
433ad2ant2 1131 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (SubGrp‘𝐺))
5 simp3 1135 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾𝑆)
6 subgslw.1 . . . . 5 𝐻 = (𝐺s 𝑆)
76subsubg 18294 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐾 ∈ (SubGrp‘𝐻) ↔ (𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐾𝑆)))
873ad2ant1 1130 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → (𝐾 ∈ (SubGrp‘𝐻) ↔ (𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐾𝑆)))
94, 5, 8mpbir2and 712 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (SubGrp‘𝐻))
106oveq1i 7145 . . . . . . 7 (𝐻s 𝑥) = ((𝐺s 𝑆) ↾s 𝑥)
11 simpl1 1188 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑆 ∈ (SubGrp‘𝐺))
126subsubg 18294 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆)))
13123ad2ant1 1130 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆)))
1413simplbda 503 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑥𝑆)
15 ressabs 16555 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((𝐺s 𝑆) ↾s 𝑥) = (𝐺s 𝑥))
1611, 14, 15syl2anc 587 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐺s 𝑆) ↾s 𝑥) = (𝐺s 𝑥))
1710, 16syl5eq 2845 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → (𝐻s 𝑥) = (𝐺s 𝑥))
1817breq2d 5042 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → (𝑃 pGrp (𝐻s 𝑥) ↔ 𝑃 pGrp (𝐺s 𝑥)))
1918anbi2d 631 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ (𝐾𝑥𝑃 pGrp (𝐺s 𝑥))))
20 simpl2 1189 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
2113simprbda 502 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑥 ∈ (SubGrp‘𝐺))
22 eqid 2798 . . . . . 6 (𝐺s 𝑥) = (𝐺s 𝑥)
2322slwispgp 18728 . . . . 5 ((𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) → ((𝐾𝑥𝑃 pGrp (𝐺s 𝑥)) ↔ 𝐾 = 𝑥))
2420, 21, 23syl2anc 587 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐺s 𝑥)) ↔ 𝐾 = 𝑥))
2519, 24bitrd 282 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥))
2625ralrimiva 3149 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → ∀𝑥 ∈ (SubGrp‘𝐻)((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥))
27 isslw 18725 . 2 (𝐾 ∈ (𝑃 pSyl 𝐻) ↔ (𝑃 ∈ ℙ ∧ 𝐾 ∈ (SubGrp‘𝐻) ∧ ∀𝑥 ∈ (SubGrp‘𝐻)((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥)))
282, 9, 26, 27syl3anbrc 1340 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  cprime 16005  s cress 16476  SubGrpcsubg 18265   pGrp cpgp 18646   pSyl cslw 18647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-addcl 10586
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-nn 11626  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-subg 18268  df-slw 18651
This theorem is referenced by:  sylow3lem6  18749
  Copyright terms: Public domain W3C validator