MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgslw Structured version   Visualization version   GIF version

Theorem subgslw 19136
Description: A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subgslw.1 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgslw ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻))

Proof of Theorem subgslw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 slwprm 19129 . . 3 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ)
213ad2ant2 1132 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝑃 ∈ ℙ)
3 slwsubg 19130 . . . 4 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
433ad2ant2 1132 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (SubGrp‘𝐺))
5 simp3 1136 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾𝑆)
6 subgslw.1 . . . . 5 𝐻 = (𝐺s 𝑆)
76subsubg 18693 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐾 ∈ (SubGrp‘𝐻) ↔ (𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐾𝑆)))
873ad2ant1 1131 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → (𝐾 ∈ (SubGrp‘𝐻) ↔ (𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐾𝑆)))
94, 5, 8mpbir2and 709 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (SubGrp‘𝐻))
106oveq1i 7265 . . . . . . 7 (𝐻s 𝑥) = ((𝐺s 𝑆) ↾s 𝑥)
11 simpl1 1189 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑆 ∈ (SubGrp‘𝐺))
126subsubg 18693 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆)))
13123ad2ant1 1131 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆)))
1413simplbda 499 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑥𝑆)
15 ressabs 16885 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((𝐺s 𝑆) ↾s 𝑥) = (𝐺s 𝑥))
1611, 14, 15syl2anc 583 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐺s 𝑆) ↾s 𝑥) = (𝐺s 𝑥))
1710, 16eqtrid 2790 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → (𝐻s 𝑥) = (𝐺s 𝑥))
1817breq2d 5082 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → (𝑃 pGrp (𝐻s 𝑥) ↔ 𝑃 pGrp (𝐺s 𝑥)))
1918anbi2d 628 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ (𝐾𝑥𝑃 pGrp (𝐺s 𝑥))))
20 simpl2 1190 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
2113simprbda 498 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑥 ∈ (SubGrp‘𝐺))
22 eqid 2738 . . . . . 6 (𝐺s 𝑥) = (𝐺s 𝑥)
2322slwispgp 19131 . . . . 5 ((𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) → ((𝐾𝑥𝑃 pGrp (𝐺s 𝑥)) ↔ 𝐾 = 𝑥))
2420, 21, 23syl2anc 583 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐺s 𝑥)) ↔ 𝐾 = 𝑥))
2519, 24bitrd 278 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥))
2625ralrimiva 3107 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → ∀𝑥 ∈ (SubGrp‘𝐻)((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥))
27 isslw 19128 . 2 (𝐾 ∈ (𝑃 pSyl 𝐻) ↔ (𝑃 ∈ ℙ ∧ 𝐾 ∈ (SubGrp‘𝐻) ∧ ∀𝑥 ∈ (SubGrp‘𝐻)((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥)))
282, 9, 26, 27syl3anbrc 1341 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  cprime 16304  s cress 16867  SubGrpcsubg 18664   pGrp cpgp 19049   pSyl cslw 19050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-subg 18667  df-slw 19054
This theorem is referenced by:  sylow3lem6  19152
  Copyright terms: Public domain W3C validator