MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgslw Structured version   Visualization version   GIF version

Theorem subgslw 19602
Description: A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subgslw.1 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgslw ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻))

Proof of Theorem subgslw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 slwprm 19595 . . 3 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝑃 ∈ ℙ)
213ad2ant2 1134 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝑃 ∈ ℙ)
3 slwsubg 19596 . . . 4 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
433ad2ant2 1134 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (SubGrp‘𝐺))
5 simp3 1138 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾𝑆)
6 subgslw.1 . . . . 5 𝐻 = (𝐺s 𝑆)
76subsubg 19137 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐾 ∈ (SubGrp‘𝐻) ↔ (𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐾𝑆)))
873ad2ant1 1133 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → (𝐾 ∈ (SubGrp‘𝐻) ↔ (𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐾𝑆)))
94, 5, 8mpbir2and 713 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (SubGrp‘𝐻))
106oveq1i 7420 . . . . . . 7 (𝐻s 𝑥) = ((𝐺s 𝑆) ↾s 𝑥)
11 simpl1 1192 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑆 ∈ (SubGrp‘𝐺))
126subsubg 19137 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆)))
13123ad2ant1 1133 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆)))
1413simplbda 499 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑥𝑆)
15 ressabs 17274 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((𝐺s 𝑆) ↾s 𝑥) = (𝐺s 𝑥))
1611, 14, 15syl2anc 584 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐺s 𝑆) ↾s 𝑥) = (𝐺s 𝑥))
1710, 16eqtrid 2783 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → (𝐻s 𝑥) = (𝐺s 𝑥))
1817breq2d 5136 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → (𝑃 pGrp (𝐻s 𝑥) ↔ 𝑃 pGrp (𝐺s 𝑥)))
1918anbi2d 630 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ (𝐾𝑥𝑃 pGrp (𝐺s 𝑥))))
20 simpl2 1193 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
2113simprbda 498 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → 𝑥 ∈ (SubGrp‘𝐺))
22 eqid 2736 . . . . . 6 (𝐺s 𝑥) = (𝐺s 𝑥)
2322slwispgp 19597 . . . . 5 ((𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝑥 ∈ (SubGrp‘𝐺)) → ((𝐾𝑥𝑃 pGrp (𝐺s 𝑥)) ↔ 𝐾 = 𝑥))
2420, 21, 23syl2anc 584 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐺s 𝑥)) ↔ 𝐾 = 𝑥))
2519, 24bitrd 279 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) ∧ 𝑥 ∈ (SubGrp‘𝐻)) → ((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥))
2625ralrimiva 3133 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → ∀𝑥 ∈ (SubGrp‘𝐻)((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥))
27 isslw 19594 . 2 (𝐾 ∈ (𝑃 pSyl 𝐻) ↔ (𝑃 ∈ ℙ ∧ 𝐾 ∈ (SubGrp‘𝐻) ∧ ∀𝑥 ∈ (SubGrp‘𝐻)((𝐾𝑥𝑃 pGrp (𝐻s 𝑥)) ↔ 𝐾 = 𝑥)))
282, 9, 26, 27syl3anbrc 1344 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑆) → 𝐾 ∈ (𝑃 pSyl 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  cprime 16695  s cress 17256  SubGrpcsubg 19108   pGrp cpgp 19512   pSyl cslw 19513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-subg 19111  df-slw 19517
This theorem is referenced by:  sylow3lem6  19618
  Copyright terms: Public domain W3C validator