MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwsubg Structured version   Visualization version   GIF version

Theorem slwsubg 18737
Description: A Sylow 𝑃-subgroup is a subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
slwsubg (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))

Proof of Theorem slwsubg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 isslw 18735 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
21simp2bi 1142 1 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wss 3938   class class class wbr 5068  cfv 6357  (class class class)co 7158  cprime 16017  s cress 16486  SubGrpcsubg 18275   pGrp cpgp 18656   pSyl cslw 18657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-subg 18278  df-slw 18661
This theorem is referenced by:  slwpgp  18740  subgslw  18743  slwhash  18751  fislw  18752  sylow2  18753  sylow3lem1  18754  sylow3lem2  18755  sylow3lem3  18756  sylow3lem4  18757  sylow3lem5  18758  sylow3lem6  18759
  Copyright terms: Public domain W3C validator