MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwsubg Structured version   Visualization version   GIF version

Theorem slwsubg 19628
Description: A Sylow 𝑃-subgroup is a subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
slwsubg (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))

Proof of Theorem slwsubg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 isslw 19626 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
21simp2bi 1147 1 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cprime 16708  s cress 17274  SubGrpcsubg 19138   pGrp cpgp 19544   pSyl cslw 19545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-subg 19141  df-slw 19549
This theorem is referenced by:  slwpgp  19631  subgslw  19634  slwhash  19642  fislw  19643  sylow2  19644  sylow3lem1  19645  sylow3lem2  19646  sylow3lem3  19647  sylow3lem4  19648  sylow3lem5  19649  sylow3lem6  19650
  Copyright terms: Public domain W3C validator