MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwsubg Structured version   Visualization version   GIF version

Theorem slwsubg 19652
Description: A Sylow 𝑃-subgroup is a subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
slwsubg (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))

Proof of Theorem slwsubg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 isslw 19650 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
21simp2bi 1146 1 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cprime 16718  s cress 17287  SubGrpcsubg 19160   pGrp cpgp 19568   pSyl cslw 19569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-subg 19163  df-slw 19573
This theorem is referenced by:  slwpgp  19655  subgslw  19658  slwhash  19666  fislw  19667  sylow2  19668  sylow3lem1  19669  sylow3lem2  19670  sylow3lem3  19671  sylow3lem4  19672  sylow3lem5  19673  sylow3lem6  19674
  Copyright terms: Public domain W3C validator