![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylow2 | Structured version Visualization version GIF version |
Description: Sylow's second theorem. See also sylow2b 19656 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 19658). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
sylow2.x | ⊢ 𝑋 = (Base‘𝐺) |
sylow2.f | ⊢ (𝜑 → 𝑋 ∈ Fin) |
sylow2.h | ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) |
sylow2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
sylow2.a | ⊢ + = (+g‘𝐺) |
sylow2.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
sylow2 | ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow2.f | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝑋 ∈ Fin) |
3 | sylow2.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) | |
4 | slwsubg 19643 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
6 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝑔 ∈ 𝑋) | |
7 | sylow2.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
8 | sylow2.a | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
9 | sylow2.d | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
10 | eqid 2735 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) = (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) | |
11 | 7, 8, 9, 10 | conjsubg 19281 | . . . . . 6 ⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺)) |
12 | 5, 6, 11 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺)) |
13 | 7 | subgss 19158 | . . . . 5 ⊢ (ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ⊆ 𝑋) |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ⊆ 𝑋) |
15 | 2, 14 | ssfid 9299 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ Fin) |
16 | simprr 773 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
17 | sylow2.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) | |
18 | 7, 1, 17 | slwhash 19657 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
19 | 7, 1, 3 | slwhash 19657 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
20 | 18, 19 | eqtr4d 2778 | . . . . 5 ⊢ (𝜑 → (♯‘𝐻) = (♯‘𝐾)) |
21 | slwsubg 19643 | . . . . . . . . 9 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | |
22 | 17, 21 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
23 | 7 | subgss 19158 | . . . . . . . 8 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ⊆ 𝑋) |
25 | 1, 24 | ssfid 9299 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Fin) |
26 | 7 | subgss 19158 | . . . . . . . 8 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
27 | 5, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
28 | 1, 27 | ssfid 9299 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ Fin) |
29 | hashen 14383 | . . . . . 6 ⊢ ((𝐻 ∈ Fin ∧ 𝐾 ∈ Fin) → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻 ≈ 𝐾)) | |
30 | 25, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻 ≈ 𝐾)) |
31 | 20, 30 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐻 ≈ 𝐾) |
32 | 7, 8, 9, 10 | conjsubgen 19282 | . . . . 5 ⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
33 | 5, 6, 32 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
34 | entr 9045 | . . . 4 ⊢ ((𝐻 ≈ 𝐾 ∧ 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) → 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
35 | 31, 33, 34 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
36 | fisseneq 9291 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ Fin ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∧ 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) → 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
37 | 15, 16, 35, 36 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
38 | eqid 2735 | . . . . 5 ⊢ (𝐺 ↾s 𝐻) = (𝐺 ↾s 𝐻) | |
39 | 38 | slwpgp 19646 | . . . 4 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
40 | 17, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
41 | 7, 1, 22, 5, 8, 40, 19, 9 | sylow2b 19656 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
42 | 37, 41 | reximddv 3169 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 ≈ cen 8981 Fincfn 8984 ↑cexp 14099 ♯chash 14366 pCnt cpc 16870 Basecbs 17245 ↾s cress 17274 +gcplusg 17298 -gcsg 18966 SubGrpcsubg 19151 pGrp cpgp 19559 pSyl cslw 19560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-dvds 16288 df-gcd 16529 df-prm 16706 df-pc 16871 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-eqg 19156 df-ghm 19244 df-ga 19321 df-od 19561 df-pgp 19563 df-slw 19564 |
This theorem is referenced by: sylow3lem3 19662 sylow3lem6 19665 |
Copyright terms: Public domain | W3C validator |