| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow2 | Structured version Visualization version GIF version | ||
| Description: Sylow's second theorem. See also sylow2b 19602 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 19604). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| sylow2.x | ⊢ 𝑋 = (Base‘𝐺) |
| sylow2.f | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| sylow2.h | ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) |
| sylow2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
| sylow2.a | ⊢ + = (+g‘𝐺) |
| sylow2.d | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| sylow2 | ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow2.f | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝑋 ∈ Fin) |
| 3 | sylow2.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) | |
| 4 | slwsubg 19589 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 6 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝑔 ∈ 𝑋) | |
| 7 | sylow2.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
| 8 | sylow2.a | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 9 | sylow2.d | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
| 10 | eqid 2735 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) = (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) | |
| 11 | 7, 8, 9, 10 | conjsubg 19231 | . . . . . 6 ⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺)) |
| 12 | 5, 6, 11 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺)) |
| 13 | 7 | subgss 19108 | . . . . 5 ⊢ (ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ⊆ 𝑋) |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ⊆ 𝑋) |
| 15 | 2, 14 | ssfid 9271 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ Fin) |
| 16 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
| 17 | sylow2.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) | |
| 18 | 7, 1, 17 | slwhash 19603 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
| 19 | 7, 1, 3 | slwhash 19603 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
| 20 | 18, 19 | eqtr4d 2773 | . . . . 5 ⊢ (𝜑 → (♯‘𝐻) = (♯‘𝐾)) |
| 21 | slwsubg 19589 | . . . . . . . . 9 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | |
| 22 | 17, 21 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
| 23 | 7 | subgss 19108 | . . . . . . . 8 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
| 24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ⊆ 𝑋) |
| 25 | 1, 24 | ssfid 9271 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Fin) |
| 26 | 7 | subgss 19108 | . . . . . . . 8 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
| 27 | 5, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
| 28 | 1, 27 | ssfid 9271 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ Fin) |
| 29 | hashen 14363 | . . . . . 6 ⊢ ((𝐻 ∈ Fin ∧ 𝐾 ∈ Fin) → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻 ≈ 𝐾)) | |
| 30 | 25, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻 ≈ 𝐾)) |
| 31 | 20, 30 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐻 ≈ 𝐾) |
| 32 | 7, 8, 9, 10 | conjsubgen 19232 | . . . . 5 ⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 33 | 5, 6, 32 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 34 | entr 9018 | . . . 4 ⊢ ((𝐻 ≈ 𝐾 ∧ 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) → 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
| 35 | 31, 33, 34 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 36 | fisseneq 9263 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ Fin ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∧ 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) → 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
| 37 | 15, 16, 35, 36 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 38 | eqid 2735 | . . . . 5 ⊢ (𝐺 ↾s 𝐻) = (𝐺 ↾s 𝐻) | |
| 39 | 38 | slwpgp 19592 | . . . 4 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
| 40 | 17, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
| 41 | 7, 1, 22, 5, 8, 40, 19, 9 | sylow2b 19602 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 42 | 37, 41 | reximddv 3156 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 ‘cfv 6530 (class class class)co 7403 ≈ cen 8954 Fincfn 8957 ↑cexp 14077 ♯chash 14346 pCnt cpc 16854 Basecbs 17226 ↾s cress 17249 +gcplusg 17269 -gcsg 18916 SubGrpcsubg 19101 pGrp cpgp 19505 pSyl cslw 19506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-ec 8719 df-qs 8723 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-xnn0 12573 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 df-dvds 16271 df-gcd 16512 df-prm 16689 df-pc 16855 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-eqg 19106 df-ghm 19194 df-ga 19271 df-od 19507 df-pgp 19509 df-slw 19510 |
| This theorem is referenced by: sylow3lem3 19608 sylow3lem6 19611 |
| Copyright terms: Public domain | W3C validator |