MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2 Structured version   Visualization version   GIF version

Theorem sylow2 19659
Description: Sylow's second theorem. See also sylow2b 19656 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 19658). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2.x 𝑋 = (Base‘𝐺)
sylow2.f (𝜑𝑋 ∈ Fin)
sylow2.h (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
sylow2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow2.a + = (+g𝐺)
sylow2.d = (-g𝐺)
Assertion
Ref Expression
sylow2 (𝜑 → ∃𝑔𝑋 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Distinct variable groups:   𝑥,   𝑥,𝑔, +   𝑔,𝐺,𝑥   𝑔,𝐻,𝑥   𝑔,𝐾,𝑥   𝜑,𝑔   𝑔,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥,𝑔)   (𝑔)

Proof of Theorem sylow2
StepHypRef Expression
1 sylow2.f . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 480 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝑋 ∈ Fin)
3 sylow2.k . . . . . . 7 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
4 slwsubg 19643 . . . . . . 7 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
53, 4syl 17 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
6 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝑔𝑋)
7 sylow2.x . . . . . . 7 𝑋 = (Base‘𝐺)
8 sylow2.a . . . . . . 7 + = (+g𝐺)
9 sylow2.d . . . . . . 7 = (-g𝐺)
10 eqid 2735 . . . . . . 7 (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) = (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))
117, 8, 9, 10conjsubg 19281 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺))
125, 6, 11syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺))
137subgss 19158 . . . . 5 (ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ⊆ 𝑋)
1412, 13syl 17 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ⊆ 𝑋)
152, 14ssfid 9299 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ Fin)
16 simprr 773 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
17 sylow2.h . . . . . . 7 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
187, 1, 17slwhash 19657 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
197, 1, 3slwhash 19657 . . . . . 6 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
2018, 19eqtr4d 2778 . . . . 5 (𝜑 → (♯‘𝐻) = (♯‘𝐾))
21 slwsubg 19643 . . . . . . . . 9 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
2217, 21syl 17 . . . . . . . 8 (𝜑𝐻 ∈ (SubGrp‘𝐺))
237subgss 19158 . . . . . . . 8 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
2422, 23syl 17 . . . . . . 7 (𝜑𝐻𝑋)
251, 24ssfid 9299 . . . . . 6 (𝜑𝐻 ∈ Fin)
267subgss 19158 . . . . . . . 8 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
275, 26syl 17 . . . . . . 7 (𝜑𝐾𝑋)
281, 27ssfid 9299 . . . . . 6 (𝜑𝐾 ∈ Fin)
29 hashen 14383 . . . . . 6 ((𝐻 ∈ Fin ∧ 𝐾 ∈ Fin) → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻𝐾))
3025, 28, 29syl2anc 584 . . . . 5 (𝜑 → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻𝐾))
3120, 30mpbid 232 . . . 4 (𝜑𝐻𝐾)
327, 8, 9, 10conjsubgen 19282 . . . . 5 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → 𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
335, 6, 32syl2an2r 685 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
34 entr 9045 . . . 4 ((𝐻𝐾𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))) → 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
3531, 33, 34syl2an2r 685 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
36 fisseneq 9291 . . 3 ((ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ Fin ∧ 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∧ 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))) → 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
3715, 16, 35, 36syl3anc 1370 . 2 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
38 eqid 2735 . . . . 5 (𝐺s 𝐻) = (𝐺s 𝐻)
3938slwpgp 19646 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐻))
4017, 39syl 17 . . 3 (𝜑𝑃 pGrp (𝐺s 𝐻))
417, 1, 22, 5, 8, 40, 19, 9sylow2b 19656 . 2 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
4237, 41reximddv 3169 1 (𝜑 → ∃𝑔𝑋 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  wss 3963   class class class wbr 5148  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  cen 8981  Fincfn 8984  cexp 14099  chash 14366   pCnt cpc 16870  Basecbs 17245  s cress 17274  +gcplusg 17298  -gcsg 18966  SubGrpcsubg 19151   pGrp cpgp 19559   pSyl cslw 19560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-eqg 19156  df-ghm 19244  df-ga 19321  df-od 19561  df-pgp 19563  df-slw 19564
This theorem is referenced by:  sylow3lem3  19662  sylow3lem6  19665
  Copyright terms: Public domain W3C validator