Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2 Structured version   Visualization version   GIF version

Theorem sylow2 18746
 Description: Sylow's second theorem. See also sylow2b 18743 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 18745). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
sylow2.x 𝑋 = (Base‘𝐺)
sylow2.f (𝜑𝑋 ∈ Fin)
sylow2.h (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
sylow2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow2.a + = (+g𝐺)
sylow2.d = (-g𝐺)
Assertion
Ref Expression
sylow2 (𝜑 → ∃𝑔𝑋 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
Distinct variable groups:   𝑥,   𝑥,𝑔, +   𝑔,𝐺,𝑥   𝑔,𝐻,𝑥   𝑔,𝐾,𝑥   𝜑,𝑔   𝑔,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥,𝑔)   (𝑔)

Proof of Theorem sylow2
StepHypRef Expression
1 sylow2.f . . . . 5 (𝜑𝑋 ∈ Fin)
21adantr 484 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝑋 ∈ Fin)
3 sylow2.k . . . . . . 7 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
4 slwsubg 18730 . . . . . . 7 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
53, 4syl 17 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝑔𝑋)
7 sylow2.x . . . . . . 7 𝑋 = (Base‘𝐺)
8 sylow2.a . . . . . . 7 + = (+g𝐺)
9 sylow2.d . . . . . . 7 = (-g𝐺)
10 eqid 2801 . . . . . . 7 (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) = (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))
117, 8, 9, 10conjsubg 18385 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺))
125, 6, 11syl2an2r 684 . . . . 5 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺))
137subgss 18275 . . . . 5 (ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ⊆ 𝑋)
1412, 13syl 17 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ⊆ 𝑋)
152, 14ssfid 8729 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ Fin)
16 simprr 772 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
17 sylow2.h . . . . . . 7 (𝜑𝐻 ∈ (𝑃 pSyl 𝐺))
187, 1, 17slwhash 18744 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
197, 1, 3slwhash 18744 . . . . . 6 (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
2018, 19eqtr4d 2839 . . . . 5 (𝜑 → (♯‘𝐻) = (♯‘𝐾))
21 slwsubg 18730 . . . . . . . . 9 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
2217, 21syl 17 . . . . . . . 8 (𝜑𝐻 ∈ (SubGrp‘𝐺))
237subgss 18275 . . . . . . . 8 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
2422, 23syl 17 . . . . . . 7 (𝜑𝐻𝑋)
251, 24ssfid 8729 . . . . . 6 (𝜑𝐻 ∈ Fin)
267subgss 18275 . . . . . . . 8 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
275, 26syl 17 . . . . . . 7 (𝜑𝐾𝑋)
281, 27ssfid 8729 . . . . . 6 (𝜑𝐾 ∈ Fin)
29 hashen 13707 . . . . . 6 ((𝐻 ∈ Fin ∧ 𝐾 ∈ Fin) → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻𝐾))
3025, 28, 29syl2anc 587 . . . . 5 (𝜑 → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻𝐾))
3120, 30mpbid 235 . . . 4 (𝜑𝐻𝐾)
327, 8, 9, 10conjsubgen 18386 . . . . 5 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔𝑋) → 𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
335, 6, 32syl2an2r 684 . . . 4 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
34 entr 8548 . . . 4 ((𝐻𝐾𝐾 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))) → 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
3531, 33, 34syl2an2r 684 . . 3 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
36 fisseneq 8717 . . 3 ((ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∈ Fin ∧ 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)) ∧ 𝐻 ≈ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔))) → 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
3715, 16, 35, 36syl3anc 1368 . 2 ((𝜑 ∧ (𝑔𝑋𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))) → 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
38 eqid 2801 . . . . 5 (𝐺s 𝐻) = (𝐺s 𝐻)
3938slwpgp 18733 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐻))
4017, 39syl 17 . . 3 (𝜑𝑃 pGrp (𝐺s 𝐻))
417, 1, 22, 5, 8, 40, 19, 9sylow2b 18743 . 2 (𝜑 → ∃𝑔𝑋 𝐻 ⊆ ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
4237, 41reximddv 3237 1 (𝜑 → ∃𝑔𝑋 𝐻 = ran (𝑥𝐾 ↦ ((𝑔 + 𝑥) 𝑔)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∃wrex 3110   ⊆ wss 3884   class class class wbr 5033   ↦ cmpt 5113  ran crn 5524  ‘cfv 6328  (class class class)co 7139   ≈ cen 8493  Fincfn 8496  ↑cexp 13429  ♯chash 13690   pCnt cpc 16166  Basecbs 16478   ↾s cress 16479  +gcplusg 16560  -gcsg 18100  SubGrpcsubg 18268   pGrp cpgp 18649   pSyl cslw 18650 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-dvds 15603  df-gcd 15837  df-prm 16009  df-pc 16167  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-eqg 18273  df-ghm 18351  df-ga 18415  df-od 18651  df-pgp 18653  df-slw 18654 This theorem is referenced by:  sylow3lem3  18749  sylow3lem6  18752
 Copyright terms: Public domain W3C validator