| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow2 | Structured version Visualization version GIF version | ||
| Description: Sylow's second theorem. See also sylow2b 19533 for the "hard" part of the proof. Any two Sylow 𝑃-subgroups are conjugate to one another, and hence the same size, namely 𝑃↑(𝑃 pCnt ∣ 𝑋 ∣ ) (see fislw 19535). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| sylow2.x | ⊢ 𝑋 = (Base‘𝐺) |
| sylow2.f | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| sylow2.h | ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) |
| sylow2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
| sylow2.a | ⊢ + = (+g‘𝐺) |
| sylow2.d | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| sylow2 | ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow2.f | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝑋 ∈ Fin) |
| 3 | sylow2.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) | |
| 4 | slwsubg 19520 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 6 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝑔 ∈ 𝑋) | |
| 7 | sylow2.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝐺) | |
| 8 | sylow2.a | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 9 | sylow2.d | . . . . . . 7 ⊢ − = (-g‘𝐺) | |
| 10 | eqid 2731 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) = (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) | |
| 11 | 7, 8, 9, 10 | conjsubg 19160 | . . . . . 6 ⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺)) |
| 12 | 5, 6, 11 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺)) |
| 13 | 7 | subgss 19037 | . . . . 5 ⊢ (ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ (SubGrp‘𝐺) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ⊆ 𝑋) |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ⊆ 𝑋) |
| 15 | 2, 14 | ssfid 9153 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ Fin) |
| 16 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
| 17 | sylow2.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ (𝑃 pSyl 𝐺)) | |
| 18 | 7, 1, 17 | slwhash 19534 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
| 19 | 7, 1, 3 | slwhash 19534 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐾) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) |
| 20 | 18, 19 | eqtr4d 2769 | . . . . 5 ⊢ (𝜑 → (♯‘𝐻) = (♯‘𝐾)) |
| 21 | slwsubg 19520 | . . . . . . . . 9 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | |
| 22 | 17, 21 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
| 23 | 7 | subgss 19037 | . . . . . . . 8 ⊢ (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 ⊆ 𝑋) |
| 24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ⊆ 𝑋) |
| 25 | 1, 24 | ssfid 9153 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Fin) |
| 26 | 7 | subgss 19037 | . . . . . . . 8 ⊢ (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 ⊆ 𝑋) |
| 27 | 5, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ⊆ 𝑋) |
| 28 | 1, 27 | ssfid 9153 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ Fin) |
| 29 | hashen 14251 | . . . . . 6 ⊢ ((𝐻 ∈ Fin ∧ 𝐾 ∈ Fin) → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻 ≈ 𝐾)) | |
| 30 | 25, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐻) = (♯‘𝐾) ↔ 𝐻 ≈ 𝐾)) |
| 31 | 20, 30 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐻 ≈ 𝐾) |
| 32 | 7, 8, 9, 10 | conjsubgen 19161 | . . . . 5 ⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝑔 ∈ 𝑋) → 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 33 | 5, 6, 32 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 34 | entr 8928 | . . . 4 ⊢ ((𝐻 ≈ 𝐾 ∧ 𝐾 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) → 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
| 35 | 31, 33, 34 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 36 | fisseneq 9147 | . . 3 ⊢ ((ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∈ Fin ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)) ∧ 𝐻 ≈ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) → 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) | |
| 37 | 15, 16, 35, 36 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ (𝑔 ∈ 𝑋 ∧ 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔)))) → 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 38 | eqid 2731 | . . . . 5 ⊢ (𝐺 ↾s 𝐻) = (𝐺 ↾s 𝐻) | |
| 39 | 38 | slwpgp 19523 | . . . 4 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
| 40 | 17, 39 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 pGrp (𝐺 ↾s 𝐻)) |
| 41 | 7, 1, 22, 5, 8, 40, 19, 9 | sylow2b 19533 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 ⊆ ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| 42 | 37, 41 | reximddv 3148 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝑋 𝐻 = ran (𝑥 ∈ 𝐾 ↦ ((𝑔 + 𝑥) − 𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ≈ cen 8866 Fincfn 8869 ↑cexp 13965 ♯chash 14234 pCnt cpc 16745 Basecbs 17117 ↾s cress 17138 +gcplusg 17158 -gcsg 18845 SubGrpcsubg 19030 pGrp cpgp 19436 pSyl cslw 19437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-dvds 16161 df-gcd 16403 df-prm 16580 df-pc 16746 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-eqg 19035 df-ghm 19123 df-ga 19200 df-od 19438 df-pgp 19440 df-slw 19441 |
| This theorem is referenced by: sylow3lem3 19539 sylow3lem6 19542 |
| Copyright terms: Public domain | W3C validator |