MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssp Structured version   Visualization version   GIF version

Theorem isssp 30710
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isssp.g 𝐺 = ( +𝑣𝑈)
isssp.f 𝐹 = ( +𝑣𝑊)
isssp.s 𝑆 = ( ·𝑠OLD𝑈)
isssp.r 𝑅 = ( ·𝑠OLD𝑊)
isssp.n 𝑁 = (normCV𝑈)
isssp.m 𝑀 = (normCV𝑊)
isssp.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
isssp (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))

Proof of Theorem isssp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 isssp.g . . . 4 𝐺 = ( +𝑣𝑈)
2 isssp.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
3 isssp.n . . . 4 𝑁 = (normCV𝑈)
4 isssp.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspval 30709 . . 3 (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
65eleq2d 2821 . 2 (𝑈 ∈ NrmCVec → (𝑊𝐻𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)}))
7 fveq2 6881 . . . . . 6 (𝑤 = 𝑊 → ( +𝑣𝑤) = ( +𝑣𝑊))
8 isssp.f . . . . . 6 𝐹 = ( +𝑣𝑊)
97, 8eqtr4di 2789 . . . . 5 (𝑤 = 𝑊 → ( +𝑣𝑤) = 𝐹)
109sseq1d 3995 . . . 4 (𝑤 = 𝑊 → (( +𝑣𝑤) ⊆ 𝐺𝐹𝐺))
11 fveq2 6881 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = ( ·𝑠OLD𝑊))
12 isssp.r . . . . . 6 𝑅 = ( ·𝑠OLD𝑊)
1311, 12eqtr4di 2789 . . . . 5 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = 𝑅)
1413sseq1d 3995 . . . 4 (𝑤 = 𝑊 → (( ·𝑠OLD𝑤) ⊆ 𝑆𝑅𝑆))
15 fveq2 6881 . . . . . 6 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
16 isssp.m . . . . . 6 𝑀 = (normCV𝑊)
1715, 16eqtr4di 2789 . . . . 5 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
1817sseq1d 3995 . . . 4 (𝑤 = 𝑊 → ((normCV𝑤) ⊆ 𝑁𝑀𝑁))
1910, 14, 183anbi123d 1438 . . 3 (𝑤 = 𝑊 → ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) ↔ (𝐹𝐺𝑅𝑆𝑀𝑁)))
2019elrab 3676 . 2 (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁)))
216, 20bitrdi 287 1 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3420  wss 3931  cfv 6536  NrmCVeccnv 30570   +𝑣 cpv 30571   ·𝑠OLD cns 30573  normCVcnmcv 30576  SubSpcss 30707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-oprab 7414  df-1st 7993  df-2nd 7994  df-vc 30545  df-nv 30578  df-va 30581  df-sm 30583  df-nmcv 30586  df-ssp 30708
This theorem is referenced by:  sspid  30711  sspnv  30712  sspba  30713  sspg  30714  ssps  30716  sspn  30722  hhsst  31252  hhsssh2  31256
  Copyright terms: Public domain W3C validator