Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isssp | Structured version Visualization version GIF version |
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isssp.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
isssp.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
isssp.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
isssp.r | ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) |
isssp.n | ⊢ 𝑁 = (normCV‘𝑈) |
isssp.m | ⊢ 𝑀 = (normCV‘𝑊) |
isssp.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
isssp | ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isssp.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | isssp.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | isssp.n | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
4 | isssp.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
5 | 1, 2, 3, 4 | sspval 28986 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)})) |
7 | fveq2 6756 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = ( +𝑣 ‘𝑊)) | |
8 | isssp.f | . . . . . 6 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
9 | 7, 8 | eqtr4di 2797 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = 𝐹) |
10 | 9 | sseq1d 3948 | . . . 4 ⊢ (𝑤 = 𝑊 → (( +𝑣 ‘𝑤) ⊆ 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
11 | fveq2 6756 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = ( ·𝑠OLD ‘𝑊)) | |
12 | isssp.r | . . . . . 6 ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) | |
13 | 11, 12 | eqtr4di 2797 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = 𝑅) |
14 | 13 | sseq1d 3948 | . . . 4 ⊢ (𝑤 = 𝑊 → (( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆)) |
15 | fveq2 6756 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = (normCV‘𝑊)) | |
16 | isssp.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
17 | 15, 16 | eqtr4di 2797 | . . . . 5 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = 𝑀) |
18 | 17 | sseq1d 3948 | . . . 4 ⊢ (𝑤 = 𝑊 → ((normCV‘𝑤) ⊆ 𝑁 ↔ 𝑀 ⊆ 𝑁)) |
19 | 10, 14, 18 | 3anbi123d 1434 | . . 3 ⊢ (𝑤 = 𝑊 → ((( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁) ↔ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
20 | 19 | elrab 3617 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
21 | 6, 20 | bitrdi 286 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ‘cfv 6418 NrmCVeccnv 28847 +𝑣 cpv 28848 ·𝑠OLD cns 28850 normCVcnmcv 28853 SubSpcss 28984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-oprab 7259 df-1st 7804 df-2nd 7805 df-vc 28822 df-nv 28855 df-va 28858 df-sm 28860 df-nmcv 28863 df-ssp 28985 |
This theorem is referenced by: sspid 28988 sspnv 28989 sspba 28990 sspg 28991 ssps 28993 sspn 28999 hhsst 29529 hhsssh2 29533 |
Copyright terms: Public domain | W3C validator |