MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssp Structured version   Visualization version   GIF version

Theorem isssp 29086
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isssp.g 𝐺 = ( +𝑣𝑈)
isssp.f 𝐹 = ( +𝑣𝑊)
isssp.s 𝑆 = ( ·𝑠OLD𝑈)
isssp.r 𝑅 = ( ·𝑠OLD𝑊)
isssp.n 𝑁 = (normCV𝑈)
isssp.m 𝑀 = (normCV𝑊)
isssp.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
isssp (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))

Proof of Theorem isssp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 isssp.g . . . 4 𝐺 = ( +𝑣𝑈)
2 isssp.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
3 isssp.n . . . 4 𝑁 = (normCV𝑈)
4 isssp.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspval 29085 . . 3 (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
65eleq2d 2824 . 2 (𝑈 ∈ NrmCVec → (𝑊𝐻𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)}))
7 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → ( +𝑣𝑤) = ( +𝑣𝑊))
8 isssp.f . . . . . 6 𝐹 = ( +𝑣𝑊)
97, 8eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → ( +𝑣𝑤) = 𝐹)
109sseq1d 3952 . . . 4 (𝑤 = 𝑊 → (( +𝑣𝑤) ⊆ 𝐺𝐹𝐺))
11 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = ( ·𝑠OLD𝑊))
12 isssp.r . . . . . 6 𝑅 = ( ·𝑠OLD𝑊)
1311, 12eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = 𝑅)
1413sseq1d 3952 . . . 4 (𝑤 = 𝑊 → (( ·𝑠OLD𝑤) ⊆ 𝑆𝑅𝑆))
15 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
16 isssp.m . . . . . 6 𝑀 = (normCV𝑊)
1715, 16eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
1817sseq1d 3952 . . . 4 (𝑤 = 𝑊 → ((normCV𝑤) ⊆ 𝑁𝑀𝑁))
1910, 14, 183anbi123d 1435 . . 3 (𝑤 = 𝑊 → ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) ↔ (𝐹𝐺𝑅𝑆𝑀𝑁)))
2019elrab 3624 . 2 (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁)))
216, 20bitrdi 287 1 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  wss 3887  cfv 6433  NrmCVeccnv 28946   +𝑣 cpv 28947   ·𝑠OLD cns 28949  normCVcnmcv 28952  SubSpcss 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-oprab 7279  df-1st 7831  df-2nd 7832  df-vc 28921  df-nv 28954  df-va 28957  df-sm 28959  df-nmcv 28962  df-ssp 29084
This theorem is referenced by:  sspid  29087  sspnv  29088  sspba  29089  sspg  29090  ssps  29092  sspn  29098  hhsst  29628  hhsssh2  29632
  Copyright terms: Public domain W3C validator