Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isssp | Structured version Visualization version GIF version |
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isssp.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
isssp.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
isssp.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
isssp.r | ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) |
isssp.n | ⊢ 𝑁 = (normCV‘𝑈) |
isssp.m | ⊢ 𝑀 = (normCV‘𝑊) |
isssp.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
isssp | ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isssp.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | isssp.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | isssp.n | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
4 | isssp.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
5 | 1, 2, 3, 4 | sspval 28598 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) |
6 | 5 | eleq2d 2838 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)})) |
7 | fveq2 6659 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = ( +𝑣 ‘𝑊)) | |
8 | isssp.f | . . . . . 6 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
9 | 7, 8 | eqtr4di 2812 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = 𝐹) |
10 | 9 | sseq1d 3924 | . . . 4 ⊢ (𝑤 = 𝑊 → (( +𝑣 ‘𝑤) ⊆ 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
11 | fveq2 6659 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = ( ·𝑠OLD ‘𝑊)) | |
12 | isssp.r | . . . . . 6 ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) | |
13 | 11, 12 | eqtr4di 2812 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = 𝑅) |
14 | 13 | sseq1d 3924 | . . . 4 ⊢ (𝑤 = 𝑊 → (( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆)) |
15 | fveq2 6659 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = (normCV‘𝑊)) | |
16 | isssp.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
17 | 15, 16 | eqtr4di 2812 | . . . . 5 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = 𝑀) |
18 | 17 | sseq1d 3924 | . . . 4 ⊢ (𝑤 = 𝑊 → ((normCV‘𝑤) ⊆ 𝑁 ↔ 𝑀 ⊆ 𝑁)) |
19 | 10, 14, 18 | 3anbi123d 1434 | . . 3 ⊢ (𝑤 = 𝑊 → ((( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁) ↔ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
20 | 19 | elrab 3603 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
21 | 6, 20 | bitrdi 290 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 {crab 3075 ⊆ wss 3859 ‘cfv 6336 NrmCVeccnv 28459 +𝑣 cpv 28460 ·𝑠OLD cns 28462 normCVcnmcv 28465 SubSpcss 28596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fo 6342 df-fv 6344 df-oprab 7155 df-1st 7694 df-2nd 7695 df-vc 28434 df-nv 28467 df-va 28470 df-sm 28472 df-nmcv 28475 df-ssp 28597 |
This theorem is referenced by: sspid 28600 sspnv 28601 sspba 28602 sspg 28603 ssps 28605 sspn 28611 hhsst 29141 hhsssh2 29145 |
Copyright terms: Public domain | W3C validator |