![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isssp | Structured version Visualization version GIF version |
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isssp.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
isssp.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
isssp.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
isssp.r | ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) |
isssp.n | ⊢ 𝑁 = (normCV‘𝑈) |
isssp.m | ⊢ 𝑀 = (normCV‘𝑊) |
isssp.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
isssp | ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isssp.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | isssp.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | isssp.n | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
4 | isssp.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
5 | 1, 2, 3, 4 | sspval 28103 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) |
6 | 5 | eleq2d 2864 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)})) |
7 | fveq2 6411 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = ( +𝑣 ‘𝑊)) | |
8 | isssp.f | . . . . . 6 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
9 | 7, 8 | syl6eqr 2851 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = 𝐹) |
10 | 9 | sseq1d 3828 | . . . 4 ⊢ (𝑤 = 𝑊 → (( +𝑣 ‘𝑤) ⊆ 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
11 | fveq2 6411 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = ( ·𝑠OLD ‘𝑊)) | |
12 | isssp.r | . . . . . 6 ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) | |
13 | 11, 12 | syl6eqr 2851 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = 𝑅) |
14 | 13 | sseq1d 3828 | . . . 4 ⊢ (𝑤 = 𝑊 → (( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆)) |
15 | fveq2 6411 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = (normCV‘𝑊)) | |
16 | isssp.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
17 | 15, 16 | syl6eqr 2851 | . . . . 5 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = 𝑀) |
18 | 17 | sseq1d 3828 | . . . 4 ⊢ (𝑤 = 𝑊 → ((normCV‘𝑤) ⊆ 𝑁 ↔ 𝑀 ⊆ 𝑁)) |
19 | 10, 14, 18 | 3anbi123d 1561 | . . 3 ⊢ (𝑤 = 𝑊 → ((( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁) ↔ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
20 | 19 | elrab 3556 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
21 | 6, 20 | syl6bb 279 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 {crab 3093 ⊆ wss 3769 ‘cfv 6101 NrmCVeccnv 27964 +𝑣 cpv 27965 ·𝑠OLD cns 27967 normCVcnmcv 27970 SubSpcss 28101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fo 6107 df-fv 6109 df-oprab 6882 df-1st 7401 df-2nd 7402 df-vc 27939 df-nv 27972 df-va 27975 df-sm 27977 df-nmcv 27980 df-ssp 28102 |
This theorem is referenced by: sspid 28105 sspnv 28106 sspba 28107 sspg 28108 ssps 28110 sspn 28116 hhsst 28648 hhsssh2 28652 |
Copyright terms: Public domain | W3C validator |