| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isssp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isssp.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| isssp.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
| isssp.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| isssp.r | ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) |
| isssp.n | ⊢ 𝑁 = (normCV‘𝑈) |
| isssp.m | ⊢ 𝑀 = (normCV‘𝑊) |
| isssp.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| isssp | ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssp.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | isssp.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 3 | isssp.n | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 4 | isssp.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 5 | 1, 2, 3, 4 | sspval 30695 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) |
| 6 | 5 | eleq2d 2817 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)})) |
| 7 | fveq2 6817 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = ( +𝑣 ‘𝑊)) | |
| 8 | isssp.f | . . . . . 6 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
| 9 | 7, 8 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = 𝐹) |
| 10 | 9 | sseq1d 3961 | . . . 4 ⊢ (𝑤 = 𝑊 → (( +𝑣 ‘𝑤) ⊆ 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
| 11 | fveq2 6817 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = ( ·𝑠OLD ‘𝑊)) | |
| 12 | isssp.r | . . . . . 6 ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) | |
| 13 | 11, 12 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = 𝑅) |
| 14 | 13 | sseq1d 3961 | . . . 4 ⊢ (𝑤 = 𝑊 → (( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆)) |
| 15 | fveq2 6817 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = (normCV‘𝑊)) | |
| 16 | isssp.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
| 17 | 15, 16 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = 𝑀) |
| 18 | 17 | sseq1d 3961 | . . . 4 ⊢ (𝑤 = 𝑊 → ((normCV‘𝑤) ⊆ 𝑁 ↔ 𝑀 ⊆ 𝑁)) |
| 19 | 10, 14, 18 | 3anbi123d 1438 | . . 3 ⊢ (𝑤 = 𝑊 → ((( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁) ↔ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
| 20 | 19 | elrab 3642 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
| 21 | 6, 20 | bitrdi 287 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ‘cfv 6476 NrmCVeccnv 30556 +𝑣 cpv 30557 ·𝑠OLD cns 30559 normCVcnmcv 30562 SubSpcss 30693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-oprab 7345 df-1st 7916 df-2nd 7917 df-vc 30531 df-nv 30564 df-va 30567 df-sm 30569 df-nmcv 30572 df-ssp 30694 |
| This theorem is referenced by: sspid 30697 sspnv 30698 sspba 30699 sspg 30700 ssps 30702 sspn 30708 hhsst 31238 hhsssh2 31242 |
| Copyright terms: Public domain | W3C validator |