![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isssp | Structured version Visualization version GIF version |
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isssp.g | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
isssp.f | ⊢ 𝐹 = ( +𝑣 ‘𝑊) |
isssp.s | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
isssp.r | ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) |
isssp.n | ⊢ 𝑁 = (normCV‘𝑈) |
isssp.m | ⊢ 𝑀 = (normCV‘𝑊) |
isssp.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
isssp | ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isssp.g | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | isssp.s | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
3 | isssp.n | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
4 | isssp.h | . . . 4 ⊢ 𝐻 = (SubSp‘𝑈) | |
5 | 1, 2, 3, 4 | sspval 30755 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)}) |
6 | 5 | eleq2d 2830 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)})) |
7 | fveq2 6920 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = ( +𝑣 ‘𝑊)) | |
8 | isssp.f | . . . . . 6 ⊢ 𝐹 = ( +𝑣 ‘𝑊) | |
9 | 7, 8 | eqtr4di 2798 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( +𝑣 ‘𝑤) = 𝐹) |
10 | 9 | sseq1d 4040 | . . . 4 ⊢ (𝑤 = 𝑊 → (( +𝑣 ‘𝑤) ⊆ 𝐺 ↔ 𝐹 ⊆ 𝐺)) |
11 | fveq2 6920 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = ( ·𝑠OLD ‘𝑊)) | |
12 | isssp.r | . . . . . 6 ⊢ 𝑅 = ( ·𝑠OLD ‘𝑊) | |
13 | 11, 12 | eqtr4di 2798 | . . . . 5 ⊢ (𝑤 = 𝑊 → ( ·𝑠OLD ‘𝑤) = 𝑅) |
14 | 13 | sseq1d 4040 | . . . 4 ⊢ (𝑤 = 𝑊 → (( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆)) |
15 | fveq2 6920 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = (normCV‘𝑊)) | |
16 | isssp.m | . . . . . 6 ⊢ 𝑀 = (normCV‘𝑊) | |
17 | 15, 16 | eqtr4di 2798 | . . . . 5 ⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = 𝑀) |
18 | 17 | sseq1d 4040 | . . . 4 ⊢ (𝑤 = 𝑊 → ((normCV‘𝑤) ⊆ 𝑁 ↔ 𝑀 ⊆ 𝑁)) |
19 | 10, 14, 18 | 3anbi123d 1436 | . . 3 ⊢ (𝑤 = 𝑊 → ((( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁) ↔ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
20 | 19 | elrab 3708 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣 ‘𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD ‘𝑤) ⊆ 𝑆 ∧ (normCV‘𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁))) |
21 | 6, 20 | bitrdi 287 | 1 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹 ⊆ 𝐺 ∧ 𝑅 ⊆ 𝑆 ∧ 𝑀 ⊆ 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 ‘cfv 6573 NrmCVeccnv 30616 +𝑣 cpv 30617 ·𝑠OLD cns 30619 normCVcnmcv 30622 SubSpcss 30753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-oprab 7452 df-1st 8030 df-2nd 8031 df-vc 30591 df-nv 30624 df-va 30627 df-sm 30629 df-nmcv 30632 df-ssp 30754 |
This theorem is referenced by: sspid 30757 sspnv 30758 sspba 30759 sspg 30760 ssps 30762 sspn 30768 hhsst 31298 hhsssh2 31302 |
Copyright terms: Public domain | W3C validator |