MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssp Structured version   Visualization version   GIF version

Theorem isssp 28599
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isssp.g 𝐺 = ( +𝑣𝑈)
isssp.f 𝐹 = ( +𝑣𝑊)
isssp.s 𝑆 = ( ·𝑠OLD𝑈)
isssp.r 𝑅 = ( ·𝑠OLD𝑊)
isssp.n 𝑁 = (normCV𝑈)
isssp.m 𝑀 = (normCV𝑊)
isssp.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
isssp (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))

Proof of Theorem isssp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 isssp.g . . . 4 𝐺 = ( +𝑣𝑈)
2 isssp.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
3 isssp.n . . . 4 𝑁 = (normCV𝑈)
4 isssp.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspval 28598 . . 3 (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
65eleq2d 2838 . 2 (𝑈 ∈ NrmCVec → (𝑊𝐻𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)}))
7 fveq2 6659 . . . . . 6 (𝑤 = 𝑊 → ( +𝑣𝑤) = ( +𝑣𝑊))
8 isssp.f . . . . . 6 𝐹 = ( +𝑣𝑊)
97, 8eqtr4di 2812 . . . . 5 (𝑤 = 𝑊 → ( +𝑣𝑤) = 𝐹)
109sseq1d 3924 . . . 4 (𝑤 = 𝑊 → (( +𝑣𝑤) ⊆ 𝐺𝐹𝐺))
11 fveq2 6659 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = ( ·𝑠OLD𝑊))
12 isssp.r . . . . . 6 𝑅 = ( ·𝑠OLD𝑊)
1311, 12eqtr4di 2812 . . . . 5 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = 𝑅)
1413sseq1d 3924 . . . 4 (𝑤 = 𝑊 → (( ·𝑠OLD𝑤) ⊆ 𝑆𝑅𝑆))
15 fveq2 6659 . . . . . 6 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
16 isssp.m . . . . . 6 𝑀 = (normCV𝑊)
1715, 16eqtr4di 2812 . . . . 5 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
1817sseq1d 3924 . . . 4 (𝑤 = 𝑊 → ((normCV𝑤) ⊆ 𝑁𝑀𝑁))
1910, 14, 183anbi123d 1434 . . 3 (𝑤 = 𝑊 → ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) ↔ (𝐹𝐺𝑅𝑆𝑀𝑁)))
2019elrab 3603 . 2 (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁)))
216, 20bitrdi 290 1 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  {crab 3075  wss 3859  cfv 6336  NrmCVeccnv 28459   +𝑣 cpv 28460   ·𝑠OLD cns 28462  normCVcnmcv 28465  SubSpcss 28596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fo 6342  df-fv 6344  df-oprab 7155  df-1st 7694  df-2nd 7695  df-vc 28434  df-nv 28467  df-va 28470  df-sm 28472  df-nmcv 28475  df-ssp 28597
This theorem is referenced by:  sspid  28600  sspnv  28601  sspba  28602  sspg  28603  ssps  28605  sspn  28611  hhsst  29141  hhsssh2  29145
  Copyright terms: Public domain W3C validator