![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspnv | Structured version Visualization version GIF version |
Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspnv.h | ⊢ 𝐻 = (SubSp‘𝑈) |
Ref | Expression |
---|---|
sspnv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | eqid 2725 | . . 3 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
3 | eqid 2725 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2725 | . . 3 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
5 | eqid 2725 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
6 | eqid 2725 | . . 3 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
7 | sspnv.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 30626 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
9 | 8 | simprbda 497 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ‘cfv 6549 NrmCVeccnv 30486 +𝑣 cpv 30487 ·𝑠OLD cns 30489 normCVcnmcv 30492 SubSpcss 30623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fo 6555 df-fv 6557 df-oprab 7423 df-1st 7994 df-2nd 7995 df-vc 30461 df-nv 30494 df-va 30497 df-sm 30499 df-nmcv 30502 df-ssp 30624 |
This theorem is referenced by: sspg 30630 ssps 30632 sspmlem 30634 sspmval 30635 sspz 30637 sspn 30638 sspimsval 30640 bnsscmcl 30770 minvecolem2 30777 hhshsslem1 31169 hhshsslem2 31170 |
Copyright terms: Public domain | W3C validator |