| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspnv | Structured version Visualization version GIF version | ||
| Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspnv.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspnv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2729 | . . 3 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 6 | eqid 2729 | . . 3 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
| 7 | sspnv.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isssp 30668 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
| 9 | 8 | simprbda 498 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 NrmCVeccnv 30528 +𝑣 cpv 30529 ·𝑠OLD cns 30531 normCVcnmcv 30534 SubSpcss 30665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-oprab 7353 df-1st 7924 df-2nd 7925 df-vc 30503 df-nv 30536 df-va 30539 df-sm 30541 df-nmcv 30544 df-ssp 30666 |
| This theorem is referenced by: sspg 30672 ssps 30674 sspmlem 30676 sspmval 30677 sspz 30679 sspn 30680 sspimsval 30682 bnsscmcl 30812 minvecolem2 30819 hhshsslem1 31211 hhshsslem2 31212 |
| Copyright terms: Public domain | W3C validator |