| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspnv | Structured version Visualization version GIF version | ||
| Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspnv.h | ⊢ 𝐻 = (SubSp‘𝑈) |
| Ref | Expression |
|---|---|
| sspnv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 2 | eqid 2731 | . . 3 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2731 | . . 3 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 5 | eqid 2731 | . . 3 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 6 | eqid 2731 | . . 3 ⊢ (normCV‘𝑊) = (normCV‘𝑊) | |
| 7 | sspnv.h | . . 3 ⊢ 𝐻 = (SubSp‘𝑈) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isssp 30696 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣 ‘𝑊) ⊆ ( +𝑣 ‘𝑈) ∧ ( ·𝑠OLD ‘𝑊) ⊆ ( ·𝑠OLD ‘𝑈) ∧ (normCV‘𝑊) ⊆ (normCV‘𝑈))))) |
| 9 | 8 | simprbda 498 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 NrmCVeccnv 30556 +𝑣 cpv 30557 ·𝑠OLD cns 30559 normCVcnmcv 30562 SubSpcss 30693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-oprab 7345 df-1st 7916 df-2nd 7917 df-vc 30531 df-nv 30564 df-va 30567 df-sm 30569 df-nmcv 30572 df-ssp 30694 |
| This theorem is referenced by: sspg 30700 ssps 30702 sspmlem 30704 sspmval 30705 sspz 30707 sspn 30708 sspimsval 30710 bnsscmcl 30840 minvecolem2 30847 hhshsslem1 31239 hhshsslem2 31240 |
| Copyright terms: Public domain | W3C validator |