MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspnv Structured version   Visualization version   GIF version

Theorem sspnv 30745
Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
sspnv.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspnv ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)

Proof of Theorem sspnv
StepHypRef Expression
1 eqid 2737 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
2 eqid 2737 . . 3 ( +𝑣𝑊) = ( +𝑣𝑊)
3 eqid 2737 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2737 . . 3 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
5 eqid 2737 . . 3 (normCV𝑈) = (normCV𝑈)
6 eqid 2737 . . 3 (normCV𝑊) = (normCV𝑊)
7 sspnv.h . . 3 𝐻 = (SubSp‘𝑈)
81, 2, 3, 4, 5, 6, 7isssp 30743 . 2 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
98simprbda 498 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  cfv 6561  NrmCVeccnv 30603   +𝑣 cpv 30604   ·𝑠OLD cns 30606  normCVcnmcv 30609  SubSpcss 30740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-oprab 7435  df-1st 8014  df-2nd 8015  df-vc 30578  df-nv 30611  df-va 30614  df-sm 30616  df-nmcv 30619  df-ssp 30741
This theorem is referenced by:  sspg  30747  ssps  30749  sspmlem  30751  sspmval  30752  sspz  30754  sspn  30755  sspimsval  30757  bnsscmcl  30887  minvecolem2  30894  hhshsslem1  31286  hhshsslem2  31287
  Copyright terms: Public domain W3C validator