![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspnv | Structured version Visualization version GIF version |
Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspnv.h | โข ๐ป = (SubSpโ๐) |
Ref | Expression |
---|---|
sspnv | โข ((๐ โ NrmCVec โง ๐ โ ๐ป) โ ๐ โ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 โข ( +๐ฃ โ๐) = ( +๐ฃ โ๐) | |
2 | eqid 2730 | . . 3 โข ( +๐ฃ โ๐) = ( +๐ฃ โ๐) | |
3 | eqid 2730 | . . 3 โข ( ยท๐ OLD โ๐) = ( ยท๐ OLD โ๐) | |
4 | eqid 2730 | . . 3 โข ( ยท๐ OLD โ๐) = ( ยท๐ OLD โ๐) | |
5 | eqid 2730 | . . 3 โข (normCVโ๐) = (normCVโ๐) | |
6 | eqid 2730 | . . 3 โข (normCVโ๐) = (normCVโ๐) | |
7 | sspnv.h | . . 3 โข ๐ป = (SubSpโ๐) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isssp 30242 | . 2 โข (๐ โ NrmCVec โ (๐ โ ๐ป โ (๐ โ NrmCVec โง (( +๐ฃ โ๐) โ ( +๐ฃ โ๐) โง ( ยท๐ OLD โ๐) โ ( ยท๐ OLD โ๐) โง (normCVโ๐) โ (normCVโ๐))))) |
9 | 8 | simprbda 497 | 1 โข ((๐ โ NrmCVec โง ๐ โ ๐ป) โ ๐ โ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 394 โง w3a 1085 = wceq 1539 โ wcel 2104 โ wss 3949 โcfv 6544 NrmCVeccnv 30102 +๐ฃ cpv 30103 ยท๐ OLD cns 30105 normCVcnmcv 30108 SubSpcss 30239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-oprab 7417 df-1st 7979 df-2nd 7980 df-vc 30077 df-nv 30110 df-va 30113 df-sm 30115 df-nmcv 30118 df-ssp 30240 |
This theorem is referenced by: sspg 30246 ssps 30248 sspmlem 30250 sspmval 30251 sspz 30253 sspn 30254 sspimsval 30256 bnsscmcl 30386 minvecolem2 30393 hhshsslem1 30785 hhshsslem2 30786 |
Copyright terms: Public domain | W3C validator |