MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspnv Structured version   Visualization version   GIF version

Theorem sspnv 30655
Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
sspnv.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspnv ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)

Proof of Theorem sspnv
StepHypRef Expression
1 eqid 2729 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
2 eqid 2729 . . 3 ( +𝑣𝑊) = ( +𝑣𝑊)
3 eqid 2729 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2729 . . 3 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
5 eqid 2729 . . 3 (normCV𝑈) = (normCV𝑈)
6 eqid 2729 . . 3 (normCV𝑊) = (normCV𝑊)
7 sspnv.h . . 3 𝐻 = (SubSp‘𝑈)
81, 2, 3, 4, 5, 6, 7isssp 30653 . 2 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
98simprbda 498 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914  cfv 6511  NrmCVeccnv 30513   +𝑣 cpv 30514   ·𝑠OLD cns 30516  normCVcnmcv 30519  SubSpcss 30650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-oprab 7391  df-1st 7968  df-2nd 7969  df-vc 30488  df-nv 30521  df-va 30524  df-sm 30526  df-nmcv 30529  df-ssp 30651
This theorem is referenced by:  sspg  30657  ssps  30659  sspmlem  30661  sspmval  30662  sspz  30664  sspn  30665  sspimsval  30667  bnsscmcl  30797  minvecolem2  30804  hhshsslem1  31196  hhshsslem2  31197
  Copyright terms: Public domain W3C validator