MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ebtwntg Structured version   Visualization version   GIF version

Theorem ebtwntg 28229
Description: The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ebtwntg.1 (πœ‘ β†’ 𝑁 ∈ β„•)
ebtwntg.2 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
ebtwntg.3 𝐼 = (Itvβ€˜(EEGβ€˜π‘))
ebtwntg.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
ebtwntg.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
ebtwntg.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
Assertion
Ref Expression
ebtwntg (πœ‘ β†’ (𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))

Proof of Theorem ebtwntg
Dummy variables π‘₯ 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ebtwntg.3 . . . . 5 𝐼 = (Itvβ€˜(EEGβ€˜π‘))
2 itvid 27679 . . . . . 6 Itv = Slot (Itvβ€˜ndx)
3 fvexd 6903 . . . . . 6 (πœ‘ β†’ (EEGβ€˜π‘) ∈ V)
4 ebtwntg.1 . . . . . . . . 9 (πœ‘ β†’ 𝑁 ∈ β„•)
5 eengstr 28227 . . . . . . . . 9 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
64, 5syl 17 . . . . . . . 8 (πœ‘ β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
7 structn0fun 17080 . . . . . . . 8 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
86, 7syl 17 . . . . . . 7 (πœ‘ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
9 structcnvcnv 17082 . . . . . . . . 9 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
106, 9syl 17 . . . . . . . 8 (πœ‘ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
1110funeqd 6567 . . . . . . 7 (πœ‘ β†’ (Fun β—‘β—‘(EEGβ€˜π‘) ↔ Fun ((EEGβ€˜π‘) βˆ– {βˆ…})))
128, 11mpbird 256 . . . . . 6 (πœ‘ β†’ Fun β—‘β—‘(EEGβ€˜π‘))
13 opex 5463 . . . . . . . . 9 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ V
1413prid1 4765 . . . . . . . 8 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}
15 elun2 4176 . . . . . . . 8 (⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩} β†’ ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
1614, 15ax-mp 5 . . . . . . 7 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩})
17 eengv 28226 . . . . . . . 8 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
184, 17syl 17 . . . . . . 7 (πœ‘ β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
1916, 18eleqtrrid 2840 . . . . . 6 (πœ‘ β†’ ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ (EEGβ€˜π‘))
20 fvex 6901 . . . . . . . 8 (π”Όβ€˜π‘) ∈ V
2120, 20mpoex 8062 . . . . . . 7 (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) ∈ V
2221a1i 11 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) ∈ V)
232, 3, 12, 19, 22strfv2d 17131 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) = (Itvβ€˜(EEGβ€˜π‘)))
241, 23eqtr4id 2791 . . . 4 (πœ‘ β†’ 𝐼 = (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}))
25 simprl 769 . . . . . . 7 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ π‘₯ = 𝑋)
26 simprr 771 . . . . . . 7 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ 𝑦 = π‘Œ)
2725, 26opeq12d 4880 . . . . . 6 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ ⟨π‘₯, π‘¦βŸ© = βŸ¨π‘‹, π‘ŒβŸ©)
2827breq2d 5159 . . . . 5 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ↔ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
2928rabbidv 3440 . . . 4 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©} = {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©})
30 ebtwntg.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝑃)
31 ebtwntg.2 . . . . . 6 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
3230, 31eleqtrdi 2843 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (Baseβ€˜(EEGβ€˜π‘)))
33 eengbas 28228 . . . . . 6 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
344, 33syl 17 . . . . 5 (πœ‘ β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
3532, 34eleqtrrd 2836 . . . 4 (πœ‘ β†’ 𝑋 ∈ (π”Όβ€˜π‘))
36 ebtwntg.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝑃)
3736, 31eleqtrdi 2843 . . . . 5 (πœ‘ β†’ π‘Œ ∈ (Baseβ€˜(EEGβ€˜π‘)))
3837, 34eleqtrrd 2836 . . . 4 (πœ‘ β†’ π‘Œ ∈ (π”Όβ€˜π‘))
3920rabex 5331 . . . . 5 {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ∈ V
4039a1i 11 . . . 4 (πœ‘ β†’ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ∈ V)
4124, 29, 35, 38, 40ovmpod 7556 . . 3 (πœ‘ β†’ (π‘‹πΌπ‘Œ) = {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©})
4241eleq2d 2819 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ↔ 𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©}))
43 ebtwntg.z . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑃)
4443, 31eleqtrdi 2843 . . . 4 (πœ‘ β†’ 𝑍 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4544, 34eleqtrrd 2836 . . 3 (πœ‘ β†’ 𝑍 ∈ (π”Όβ€˜π‘))
46 breq1 5150 . . . 4 (𝑧 = 𝑍 β†’ (𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4746elrab3 3683 . . 3 (𝑍 ∈ (π”Όβ€˜π‘) β†’ (𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4845, 47syl 17 . 2 (πœ‘ β†’ (𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4942, 48bitr2d 279 1 (πœ‘ β†’ (𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ w3o 1086   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βˆ– cdif 3944   βˆͺ cun 3945  βˆ…c0 4321  {csn 4627  {cpr 4629  βŸ¨cop 4633   class class class wbr 5147  β—‘ccnv 5674  Fun wfun 6534  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1c1 11107   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  7c7 12268  cdc 12673  ...cfz 13480  β†‘cexp 14023  Ξ£csu 15628   Struct cstr 17075  ndxcnx 17122  Basecbs 17140  distcds 17202  Itvcitv 27673  LineGclng 27674  π”Όcee 28135   Btwn cbtwn 28136  EEGceeng 28224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-seq 13963  df-sum 15629  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-ds 17215  df-itv 27675  df-lng 27676  df-eeng 28225
This theorem is referenced by:  elntg  28231  elntg2  28232  eengtrkg  28233  eengtrkge  28234
  Copyright terms: Public domain W3C validator