Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ebtwntg Structured version   Visualization version   GIF version

Theorem ebtwntg 26820
 Description: The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ebtwntg.1 (𝜑𝑁 ∈ ℕ)
ebtwntg.2 𝑃 = (Base‘(EEG‘𝑁))
ebtwntg.3 𝐼 = (Itv‘(EEG‘𝑁))
ebtwntg.x (𝜑𝑋𝑃)
ebtwntg.y (𝜑𝑌𝑃)
ebtwntg.z (𝜑𝑍𝑃)
Assertion
Ref Expression
ebtwntg (𝜑 → (𝑍 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 ∈ (𝑋𝐼𝑌)))

Proof of Theorem ebtwntg
Dummy variables 𝑥 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ebtwntg.3 . . . . 5 𝐼 = (Itv‘(EEG‘𝑁))
2 itvid 26280 . . . . . 6 Itv = Slot (Itv‘ndx)
3 fvexd 6670 . . . . . 6 (𝜑 → (EEG‘𝑁) ∈ V)
4 ebtwntg.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
5 eengstr 26818 . . . . . . . . 9 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
64, 5syl 17 . . . . . . . 8 (𝜑 → (EEG‘𝑁) Struct ⟨1, 17⟩)
7 structn0fun 16507 . . . . . . . 8 ((EEG‘𝑁) Struct ⟨1, 17⟩ → Fun ((EEG‘𝑁) ∖ {∅}))
86, 7syl 17 . . . . . . 7 (𝜑 → Fun ((EEG‘𝑁) ∖ {∅}))
9 structcnvcnv 16509 . . . . . . . . 9 ((EEG‘𝑁) Struct ⟨1, 17⟩ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
106, 9syl 17 . . . . . . . 8 (𝜑(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
1110funeqd 6354 . . . . . . 7 (𝜑 → (Fun (EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅})))
128, 11mpbird 260 . . . . . 6 (𝜑 → Fun (EEG‘𝑁))
13 opex 5325 . . . . . . . . 9 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ V
1413prid1 4661 . . . . . . . 8 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}
15 elun2 4107 . . . . . . . 8 (⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} → ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1614, 15ax-mp 5 . . . . . . 7 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩})
17 eengv 26817 . . . . . . . 8 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
184, 17syl 17 . . . . . . 7 (𝜑 → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1916, 18eleqtrrid 2897 . . . . . 6 (𝜑 → ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ (EEG‘𝑁))
20 fvex 6668 . . . . . . . 8 (𝔼‘𝑁) ∈ V
2120, 20mpoex 7773 . . . . . . 7 (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) ∈ V
2221a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) ∈ V)
232, 3, 12, 19, 22strfv2d 16541 . . . . 5 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) = (Itv‘(EEG‘𝑁)))
241, 23eqtr4id 2852 . . . 4 (𝜑𝐼 = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}))
25 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
26 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
2725, 26opeq12d 4777 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
2827breq2d 5046 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 Btwn ⟨𝑋, 𝑌⟩))
2928rabbidv 3428 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩} = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩})
30 ebtwntg.x . . . . . 6 (𝜑𝑋𝑃)
31 ebtwntg.2 . . . . . 6 𝑃 = (Base‘(EEG‘𝑁))
3230, 31eleqtrdi 2900 . . . . 5 (𝜑𝑋 ∈ (Base‘(EEG‘𝑁)))
33 eengbas 26819 . . . . . 6 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
344, 33syl 17 . . . . 5 (𝜑 → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
3532, 34eleqtrrd 2893 . . . 4 (𝜑𝑋 ∈ (𝔼‘𝑁))
36 ebtwntg.y . . . . . 6 (𝜑𝑌𝑃)
3736, 31eleqtrdi 2900 . . . . 5 (𝜑𝑌 ∈ (Base‘(EEG‘𝑁)))
3837, 34eleqtrrd 2893 . . . 4 (𝜑𝑌 ∈ (𝔼‘𝑁))
3920rabex 5203 . . . . 5 {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ∈ V
4039a1i 11 . . . 4 (𝜑 → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ∈ V)
4124, 29, 35, 38, 40ovmpod 7292 . . 3 (𝜑 → (𝑋𝐼𝑌) = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩})
4241eleq2d 2875 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩}))
43 ebtwntg.z . . . . 5 (𝜑𝑍𝑃)
4443, 31eleqtrdi 2900 . . . 4 (𝜑𝑍 ∈ (Base‘(EEG‘𝑁)))
4544, 34eleqtrrd 2893 . . 3 (𝜑𝑍 ∈ (𝔼‘𝑁))
46 breq1 5037 . . . 4 (𝑧 = 𝑍 → (𝑧 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4746elrab3 3631 . . 3 (𝑍 ∈ (𝔼‘𝑁) → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4845, 47syl 17 . 2 (𝜑 → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4942, 48bitr2d 283 1 (𝜑 → (𝑍 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ w3o 1083   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3442   ∖ cdif 3880   ∪ cun 3881  ∅c0 4246  {csn 4528  {cpr 4530  ⟨cop 4534   class class class wbr 5034  ◡ccnv 5522  Fun wfun 6326  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147  1c1 10545   − cmin 10877  ℕcn 11643  2c2 11698  7c7 11703  ;cdc 12106  ...cfz 12905  ↑cexp 13445  Σcsu 15054   Struct cstr 16491  ndxcnx 16492  Basecbs 16495  distcds 16586  Itvcitv 26274  LineGclng 26275  𝔼cee 26726   Btwn cbtwn 26727  EEGceeng 26815 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-seq 13385  df-sum 15055  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-ds 16599  df-itv 26276  df-lng 26277  df-eeng 26816 This theorem is referenced by:  elntg  26822  elntg2  26823  eengtrkg  26824  eengtrkge  26825
 Copyright terms: Public domain W3C validator