MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ebtwntg Structured version   Visualization version   GIF version

Theorem ebtwntg 27929
Description: The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ebtwntg.1 (𝜑𝑁 ∈ ℕ)
ebtwntg.2 𝑃 = (Base‘(EEG‘𝑁))
ebtwntg.3 𝐼 = (Itv‘(EEG‘𝑁))
ebtwntg.x (𝜑𝑋𝑃)
ebtwntg.y (𝜑𝑌𝑃)
ebtwntg.z (𝜑𝑍𝑃)
Assertion
Ref Expression
ebtwntg (𝜑 → (𝑍 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 ∈ (𝑋𝐼𝑌)))

Proof of Theorem ebtwntg
Dummy variables 𝑥 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ebtwntg.3 . . . . 5 𝐼 = (Itv‘(EEG‘𝑁))
2 itvid 27379 . . . . . 6 Itv = Slot (Itv‘ndx)
3 fvexd 6857 . . . . . 6 (𝜑 → (EEG‘𝑁) ∈ V)
4 ebtwntg.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
5 eengstr 27927 . . . . . . . . 9 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
64, 5syl 17 . . . . . . . 8 (𝜑 → (EEG‘𝑁) Struct ⟨1, 17⟩)
7 structn0fun 17022 . . . . . . . 8 ((EEG‘𝑁) Struct ⟨1, 17⟩ → Fun ((EEG‘𝑁) ∖ {∅}))
86, 7syl 17 . . . . . . 7 (𝜑 → Fun ((EEG‘𝑁) ∖ {∅}))
9 structcnvcnv 17024 . . . . . . . . 9 ((EEG‘𝑁) Struct ⟨1, 17⟩ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
106, 9syl 17 . . . . . . . 8 (𝜑(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
1110funeqd 6523 . . . . . . 7 (𝜑 → (Fun (EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅})))
128, 11mpbird 256 . . . . . 6 (𝜑 → Fun (EEG‘𝑁))
13 opex 5421 . . . . . . . . 9 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ V
1413prid1 4723 . . . . . . . 8 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}
15 elun2 4137 . . . . . . . 8 (⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} → ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1614, 15ax-mp 5 . . . . . . 7 ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩})
17 eengv 27926 . . . . . . . 8 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
184, 17syl 17 . . . . . . 7 (𝜑 → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1916, 18eleqtrrid 2845 . . . . . 6 (𝜑 → ⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩ ∈ (EEG‘𝑁))
20 fvex 6855 . . . . . . . 8 (𝔼‘𝑁) ∈ V
2120, 20mpoex 8011 . . . . . . 7 (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) ∈ V
2221a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) ∈ V)
232, 3, 12, 19, 22strfv2d 17073 . . . . 5 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}) = (Itv‘(EEG‘𝑁)))
241, 23eqtr4id 2795 . . . 4 (𝜑𝐼 = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩}))
25 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
26 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
2725, 26opeq12d 4838 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
2827breq2d 5117 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 Btwn ⟨𝑋, 𝑌⟩))
2928rabbidv 3415 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩} = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩})
30 ebtwntg.x . . . . . 6 (𝜑𝑋𝑃)
31 ebtwntg.2 . . . . . 6 𝑃 = (Base‘(EEG‘𝑁))
3230, 31eleqtrdi 2848 . . . . 5 (𝜑𝑋 ∈ (Base‘(EEG‘𝑁)))
33 eengbas 27928 . . . . . 6 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
344, 33syl 17 . . . . 5 (𝜑 → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
3532, 34eleqtrrd 2841 . . . 4 (𝜑𝑋 ∈ (𝔼‘𝑁))
36 ebtwntg.y . . . . . 6 (𝜑𝑌𝑃)
3736, 31eleqtrdi 2848 . . . . 5 (𝜑𝑌 ∈ (Base‘(EEG‘𝑁)))
3837, 34eleqtrrd 2841 . . . 4 (𝜑𝑌 ∈ (𝔼‘𝑁))
3920rabex 5289 . . . . 5 {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ∈ V
4039a1i 11 . . . 4 (𝜑 → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ∈ V)
4124, 29, 35, 38, 40ovmpod 7506 . . 3 (𝜑 → (𝑋𝐼𝑌) = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩})
4241eleq2d 2823 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩}))
43 ebtwntg.z . . . . 5 (𝜑𝑍𝑃)
4443, 31eleqtrdi 2848 . . . 4 (𝜑𝑍 ∈ (Base‘(EEG‘𝑁)))
4544, 34eleqtrrd 2841 . . 3 (𝜑𝑍 ∈ (𝔼‘𝑁))
46 breq1 5108 . . . 4 (𝑧 = 𝑍 → (𝑧 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4746elrab3 3646 . . 3 (𝑍 ∈ (𝔼‘𝑁) → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4845, 47syl 17 . 2 (𝜑 → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑋, 𝑌⟩} ↔ 𝑍 Btwn ⟨𝑋, 𝑌⟩))
4942, 48bitr2d 279 1 (𝜑 → (𝑍 Btwn ⟨𝑋, 𝑌⟩ ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1086   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  c0 4282  {csn 4586  {cpr 4588  cop 4592   class class class wbr 5105  ccnv 5632  Fun wfun 6490  cfv 6496  (class class class)co 7356  cmpo 7358  1c1 11051  cmin 11384  cn 12152  2c2 12207  7c7 12212  cdc 12617  ...cfz 13423  cexp 13966  Σcsu 15569   Struct cstr 17017  ndxcnx 17064  Basecbs 17082  distcds 17141  Itvcitv 27373  LineGclng 27374  𝔼cee 27835   Btwn cbtwn 27836  EEGceeng 27924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-om 7802  df-1st 7920  df-2nd 7921  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-er 8647  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-7 12220  df-8 12221  df-9 12222  df-n0 12413  df-z 12499  df-dec 12618  df-uz 12763  df-fz 13424  df-seq 13906  df-sum 15570  df-struct 17018  df-slot 17053  df-ndx 17065  df-base 17083  df-ds 17154  df-itv 27375  df-lng 27376  df-eeng 27925
This theorem is referenced by:  elntg  27931  elntg2  27932  eengtrkg  27933  eengtrkge  27934
  Copyright terms: Public domain W3C validator