MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ebtwntg Structured version   Visualization version   GIF version

Theorem ebtwntg 28664
Description: The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ebtwntg.1 (πœ‘ β†’ 𝑁 ∈ β„•)
ebtwntg.2 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
ebtwntg.3 𝐼 = (Itvβ€˜(EEGβ€˜π‘))
ebtwntg.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
ebtwntg.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
ebtwntg.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
Assertion
Ref Expression
ebtwntg (πœ‘ β†’ (𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))

Proof of Theorem ebtwntg
Dummy variables π‘₯ 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ebtwntg.3 . . . . 5 𝐼 = (Itvβ€˜(EEGβ€˜π‘))
2 itvid 28114 . . . . . 6 Itv = Slot (Itvβ€˜ndx)
3 fvexd 6896 . . . . . 6 (πœ‘ β†’ (EEGβ€˜π‘) ∈ V)
4 ebtwntg.1 . . . . . . . . 9 (πœ‘ β†’ 𝑁 ∈ β„•)
5 eengstr 28662 . . . . . . . . 9 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
64, 5syl 17 . . . . . . . 8 (πœ‘ β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
7 structn0fun 17080 . . . . . . . 8 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
86, 7syl 17 . . . . . . 7 (πœ‘ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
9 structcnvcnv 17082 . . . . . . . . 9 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
106, 9syl 17 . . . . . . . 8 (πœ‘ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
1110funeqd 6560 . . . . . . 7 (πœ‘ β†’ (Fun β—‘β—‘(EEGβ€˜π‘) ↔ Fun ((EEGβ€˜π‘) βˆ– {βˆ…})))
128, 11mpbird 257 . . . . . 6 (πœ‘ β†’ Fun β—‘β—‘(EEGβ€˜π‘))
13 opex 5454 . . . . . . . . 9 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ V
1413prid1 4758 . . . . . . . 8 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}
15 elun2 4169 . . . . . . . 8 (⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩} β†’ ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
1614, 15ax-mp 5 . . . . . . 7 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩})
17 eengv 28661 . . . . . . . 8 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
184, 17syl 17 . . . . . . 7 (πœ‘ β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
1916, 18eleqtrrid 2832 . . . . . 6 (πœ‘ β†’ ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ (EEGβ€˜π‘))
20 fvex 6894 . . . . . . . 8 (π”Όβ€˜π‘) ∈ V
2120, 20mpoex 8059 . . . . . . 7 (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) ∈ V
2221a1i 11 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) ∈ V)
232, 3, 12, 19, 22strfv2d 17131 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) = (Itvβ€˜(EEGβ€˜π‘)))
241, 23eqtr4id 2783 . . . 4 (πœ‘ β†’ 𝐼 = (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}))
25 simprl 768 . . . . . . 7 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ π‘₯ = 𝑋)
26 simprr 770 . . . . . . 7 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ 𝑦 = π‘Œ)
2725, 26opeq12d 4873 . . . . . 6 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ ⟨π‘₯, π‘¦βŸ© = βŸ¨π‘‹, π‘ŒβŸ©)
2827breq2d 5150 . . . . 5 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ↔ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
2928rabbidv 3432 . . . 4 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©} = {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©})
30 ebtwntg.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝑃)
31 ebtwntg.2 . . . . . 6 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
3230, 31eleqtrdi 2835 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (Baseβ€˜(EEGβ€˜π‘)))
33 eengbas 28663 . . . . . 6 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
344, 33syl 17 . . . . 5 (πœ‘ β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
3532, 34eleqtrrd 2828 . . . 4 (πœ‘ β†’ 𝑋 ∈ (π”Όβ€˜π‘))
36 ebtwntg.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝑃)
3736, 31eleqtrdi 2835 . . . . 5 (πœ‘ β†’ π‘Œ ∈ (Baseβ€˜(EEGβ€˜π‘)))
3837, 34eleqtrrd 2828 . . . 4 (πœ‘ β†’ π‘Œ ∈ (π”Όβ€˜π‘))
3920rabex 5322 . . . . 5 {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ∈ V
4039a1i 11 . . . 4 (πœ‘ β†’ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ∈ V)
4124, 29, 35, 38, 40ovmpod 7552 . . 3 (πœ‘ β†’ (π‘‹πΌπ‘Œ) = {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©})
4241eleq2d 2811 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ↔ 𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©}))
43 ebtwntg.z . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑃)
4443, 31eleqtrdi 2835 . . . 4 (πœ‘ β†’ 𝑍 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4544, 34eleqtrrd 2828 . . 3 (πœ‘ β†’ 𝑍 ∈ (π”Όβ€˜π‘))
46 breq1 5141 . . . 4 (𝑧 = 𝑍 β†’ (𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4746elrab3 3676 . . 3 (𝑍 ∈ (π”Όβ€˜π‘) β†’ (𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4845, 47syl 17 . 2 (πœ‘ β†’ (𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4942, 48bitr2d 280 1 (πœ‘ β†’ (𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ w3o 1083   = wceq 1533   ∈ wcel 2098  {crab 3424  Vcvv 3466   βˆ– cdif 3937   βˆͺ cun 3938  βˆ…c0 4314  {csn 4620  {cpr 4622  βŸ¨cop 4626   class class class wbr 5138  β—‘ccnv 5665  Fun wfun 6527  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403  1c1 11106   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  7c7 12268  cdc 12673  ...cfz 13480  β†‘cexp 14023  Ξ£csu 15628   Struct cstr 17075  ndxcnx 17122  Basecbs 17140  distcds 17202  Itvcitv 28108  LineGclng 28109  π”Όcee 28570   Btwn cbtwn 28571  EEGceeng 28659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-seq 13963  df-sum 15629  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-ds 17215  df-itv 28110  df-lng 28111  df-eeng 28660
This theorem is referenced by:  elntg  28666  elntg2  28667  eengtrkg  28668  eengtrkge  28669
  Copyright terms: Public domain W3C validator