Step | Hyp | Ref
| Expression |
1 | | ebtwntg.3 |
. . . . 5
β’ πΌ = (Itvβ(EEGβπ)) |
2 | | itvid 27423 |
. . . . . 6
β’ Itv =
Slot (Itvβndx) |
3 | | fvexd 6862 |
. . . . . 6
β’ (π β (EEGβπ) β V) |
4 | | ebtwntg.1 |
. . . . . . . . 9
β’ (π β π β β) |
5 | | eengstr 27971 |
. . . . . . . . 9
β’ (π β β β
(EEGβπ) Struct
β¨1, ;17β©) |
6 | 4, 5 | syl 17 |
. . . . . . . 8
β’ (π β (EEGβπ) Struct β¨1, ;17β©) |
7 | | structn0fun 17030 |
. . . . . . . 8
β’
((EEGβπ)
Struct β¨1, ;17β© β
Fun ((EEGβπ) β
{β
})) |
8 | 6, 7 | syl 17 |
. . . . . . 7
β’ (π β Fun ((EEGβπ) β
{β
})) |
9 | | structcnvcnv 17032 |
. . . . . . . . 9
β’
((EEGβπ)
Struct β¨1, ;17β© β
β‘β‘(EEGβπ) = ((EEGβπ) β {β
})) |
10 | 6, 9 | syl 17 |
. . . . . . . 8
β’ (π β β‘β‘(EEGβπ) = ((EEGβπ) β {β
})) |
11 | 10 | funeqd 6528 |
. . . . . . 7
β’ (π β (Fun β‘β‘(EEGβπ) β Fun ((EEGβπ) β {β
}))) |
12 | 8, 11 | mpbird 257 |
. . . . . 6
β’ (π β Fun β‘β‘(EEGβπ)) |
13 | | opex 5426 |
. . . . . . . . 9
β’
β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β© β V |
14 | 13 | prid1 4728 |
. . . . . . . 8
β’
β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β© β {β¨(Itvβndx),
(π₯ β
(πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©} |
15 | | elun2 4142 |
. . . . . . . 8
β’
(β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β© β {β¨(Itvβndx),
(π₯ β
(πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©} β
β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β© β
({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©})) |
16 | 14, 15 | ax-mp 5 |
. . . . . . 7
β’
β¨(Itvβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β© β
({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©}) |
17 | | eengv 27970 |
. . . . . . . 8
β’ (π β β β
(EEGβπ) =
({β¨(Baseβndx), (πΌβπ)β©, β¨(distβndx), (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©})) |
18 | 4, 17 | syl 17 |
. . . . . . 7
β’ (π β (EEGβπ) = ({β¨(Baseβndx),
(πΌβπ)β©,
β¨(distβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
Ξ£π β (1...π)(((π₯βπ) β (π¦βπ))β2))β©} βͺ
{β¨(Itvβndx), (π₯
β (πΌβπ),
π¦ β
(πΌβπ) β¦
{π§ β
(πΌβπ) β£
π§ Btwn β¨π₯, π¦β©})β©, β¨(LineGβndx),
(π₯ β
(πΌβπ), π¦ β ((πΌβπ) β {π₯}) β¦ {π§ β (πΌβπ) β£ (π§ Btwn β¨π₯, π¦β© β¨ π₯ Btwn β¨π§, π¦β© β¨ π¦ Btwn β¨π₯, π§β©)})β©})) |
19 | 16, 18 | eleqtrrid 2845 |
. . . . . 6
β’ (π β β¨(Itvβndx),
(π₯ β
(πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})β© β (EEGβπ)) |
20 | | fvex 6860 |
. . . . . . . 8
β’
(πΌβπ)
β V |
21 | 20, 20 | mpoex 8017 |
. . . . . . 7
β’ (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©}) β V |
22 | 21 | a1i 11 |
. . . . . 6
β’ (π β (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©}) β V) |
23 | 2, 3, 12, 19, 22 | strfv2d 17081 |
. . . . 5
β’ (π β (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©}) = (Itvβ(EEGβπ))) |
24 | 1, 23 | eqtr4id 2796 |
. . . 4
β’ (π β πΌ = (π₯ β (πΌβπ), π¦ β (πΌβπ) β¦ {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©})) |
25 | | simprl 770 |
. . . . . . 7
β’ ((π β§ (π₯ = π β§ π¦ = π)) β π₯ = π) |
26 | | simprr 772 |
. . . . . . 7
β’ ((π β§ (π₯ = π β§ π¦ = π)) β π¦ = π) |
27 | 25, 26 | opeq12d 4843 |
. . . . . 6
β’ ((π β§ (π₯ = π β§ π¦ = π)) β β¨π₯, π¦β© = β¨π, πβ©) |
28 | 27 | breq2d 5122 |
. . . . 5
β’ ((π β§ (π₯ = π β§ π¦ = π)) β (π§ Btwn β¨π₯, π¦β© β π§ Btwn β¨π, πβ©)) |
29 | 28 | rabbidv 3418 |
. . . 4
β’ ((π β§ (π₯ = π β§ π¦ = π)) β {π§ β (πΌβπ) β£ π§ Btwn β¨π₯, π¦β©} = {π§ β (πΌβπ) β£ π§ Btwn β¨π, πβ©}) |
30 | | ebtwntg.x |
. . . . . 6
β’ (π β π β π) |
31 | | ebtwntg.2 |
. . . . . 6
β’ π = (Baseβ(EEGβπ)) |
32 | 30, 31 | eleqtrdi 2848 |
. . . . 5
β’ (π β π β (Baseβ(EEGβπ))) |
33 | | eengbas 27972 |
. . . . . 6
β’ (π β β β
(πΌβπ) =
(Baseβ(EEGβπ))) |
34 | 4, 33 | syl 17 |
. . . . 5
β’ (π β (πΌβπ) = (Baseβ(EEGβπ))) |
35 | 32, 34 | eleqtrrd 2841 |
. . . 4
β’ (π β π β (πΌβπ)) |
36 | | ebtwntg.y |
. . . . . 6
β’ (π β π β π) |
37 | 36, 31 | eleqtrdi 2848 |
. . . . 5
β’ (π β π β (Baseβ(EEGβπ))) |
38 | 37, 34 | eleqtrrd 2841 |
. . . 4
β’ (π β π β (πΌβπ)) |
39 | 20 | rabex 5294 |
. . . . 5
β’ {π§ β (πΌβπ) β£ π§ Btwn β¨π, πβ©} β V |
40 | 39 | a1i 11 |
. . . 4
β’ (π β {π§ β (πΌβπ) β£ π§ Btwn β¨π, πβ©} β V) |
41 | 24, 29, 35, 38, 40 | ovmpod 7512 |
. . 3
β’ (π β (ππΌπ) = {π§ β (πΌβπ) β£ π§ Btwn β¨π, πβ©}) |
42 | 41 | eleq2d 2824 |
. 2
β’ (π β (π β (ππΌπ) β π β {π§ β (πΌβπ) β£ π§ Btwn β¨π, πβ©})) |
43 | | ebtwntg.z |
. . . . 5
β’ (π β π β π) |
44 | 43, 31 | eleqtrdi 2848 |
. . . 4
β’ (π β π β (Baseβ(EEGβπ))) |
45 | 44, 34 | eleqtrrd 2841 |
. . 3
β’ (π β π β (πΌβπ)) |
46 | | breq1 5113 |
. . . 4
β’ (π§ = π β (π§ Btwn β¨π, πβ© β π Btwn β¨π, πβ©)) |
47 | 46 | elrab3 3651 |
. . 3
β’ (π β (πΌβπ) β (π β {π§ β (πΌβπ) β£ π§ Btwn β¨π, πβ©} β π Btwn β¨π, πβ©)) |
48 | 45, 47 | syl 17 |
. 2
β’ (π β (π β {π§ β (πΌβπ) β£ π§ Btwn β¨π, πβ©} β π Btwn β¨π, πβ©)) |
49 | 42, 48 | bitr2d 280 |
1
β’ (π β (π Btwn β¨π, πβ© β π β (ππΌπ))) |