| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ebtwntg.3 | . . . . 5
⊢ 𝐼 = (Itv‘(EEG‘𝑁)) | 
| 2 |  | itvid 28448 | . . . . . 6
⊢ Itv =
Slot (Itv‘ndx) | 
| 3 |  | fvexd 6920 | . . . . . 6
⊢ (𝜑 → (EEG‘𝑁) ∈ V) | 
| 4 |  | ebtwntg.1 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 5 |  | eengstr 28996 | . . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) Struct
〈1, ;17〉) | 
| 6 | 4, 5 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (EEG‘𝑁) Struct 〈1, ;17〉) | 
| 7 |  | structn0fun 17189 | . . . . . . . 8
⊢
((EEG‘𝑁)
Struct 〈1, ;17〉 →
Fun ((EEG‘𝑁) ∖
{∅})) | 
| 8 | 6, 7 | syl 17 | . . . . . . 7
⊢ (𝜑 → Fun ((EEG‘𝑁) ∖
{∅})) | 
| 9 |  | structcnvcnv 17191 | . . . . . . . . 9
⊢
((EEG‘𝑁)
Struct 〈1, ;17〉 →
◡◡(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅})) | 
| 10 | 6, 9 | syl 17 | . . . . . . . 8
⊢ (𝜑 → ◡◡(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅})) | 
| 11 | 10 | funeqd 6587 | . . . . . . 7
⊢ (𝜑 → (Fun ◡◡(EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅}))) | 
| 12 | 8, 11 | mpbird 257 | . . . . . 6
⊢ (𝜑 → Fun ◡◡(EEG‘𝑁)) | 
| 13 |  | opex 5468 | . . . . . . . . 9
⊢
〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 ∈ V | 
| 14 | 13 | prid1 4761 | . . . . . . . 8
⊢
〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 ∈ {〈(Itv‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} | 
| 15 |  | elun2 4182 | . . . . . . . 8
⊢
(〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 ∈ {〈(Itv‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉} →
〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉 ∈
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | 
| 16 | 14, 15 | ax-mp 5 | . . . . . . 7
⊢
〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 ∈
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) | 
| 17 |  | eengv 28995 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) =
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | 
| 18 | 4, 17 | syl 17 | . . . . . . 7
⊢ (𝜑 → (EEG‘𝑁) = ({〈(Base‘ndx),
(𝔼‘𝑁)〉,
〈(dist‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | 
| 19 | 16, 18 | eleqtrrid 2847 | . . . . . 6
⊢ (𝜑 → 〈(Itv‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉 ∈ (EEG‘𝑁)) | 
| 20 |  | fvex 6918 | . . . . . . . 8
⊢
(𝔼‘𝑁)
∈ V | 
| 21 | 20, 20 | mpoex 8105 | . . . . . . 7
⊢ (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉}) ∈ V | 
| 22 | 21 | a1i 11 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉}) ∈ V) | 
| 23 | 2, 3, 12, 19, 22 | strfv2d 17239 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉}) = (Itv‘(EEG‘𝑁))) | 
| 24 | 1, 23 | eqtr4id 2795 | . . . 4
⊢ (𝜑 → 𝐼 = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})) | 
| 25 |  | simprl 770 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | 
| 26 |  | simprr 772 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | 
| 27 | 25, 26 | opeq12d 4880 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 〈𝑥, 𝑦〉 = 〈𝑋, 𝑌〉) | 
| 28 | 27 | breq2d 5154 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 Btwn 〈𝑥, 𝑦〉 ↔ 𝑧 Btwn 〈𝑋, 𝑌〉)) | 
| 29 | 28 | rabbidv 3443 | . . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉} = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑋, 𝑌〉}) | 
| 30 |  | ebtwntg.x | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) | 
| 31 |  | ebtwntg.2 | . . . . . 6
⊢ 𝑃 = (Base‘(EEG‘𝑁)) | 
| 32 | 30, 31 | eleqtrdi 2850 | . . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘(EEG‘𝑁))) | 
| 33 |  | eengbas 28997 | . . . . . 6
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) | 
| 34 | 4, 33 | syl 17 | . . . . 5
⊢ (𝜑 → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) | 
| 35 | 32, 34 | eleqtrrd 2843 | . . . 4
⊢ (𝜑 → 𝑋 ∈ (𝔼‘𝑁)) | 
| 36 |  | ebtwntg.y | . . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑃) | 
| 37 | 36, 31 | eleqtrdi 2850 | . . . . 5
⊢ (𝜑 → 𝑌 ∈ (Base‘(EEG‘𝑁))) | 
| 38 | 37, 34 | eleqtrrd 2843 | . . . 4
⊢ (𝜑 → 𝑌 ∈ (𝔼‘𝑁)) | 
| 39 | 20 | rabex 5338 | . . . . 5
⊢ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑋, 𝑌〉} ∈ V | 
| 40 | 39 | a1i 11 | . . . 4
⊢ (𝜑 → {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑋, 𝑌〉} ∈ V) | 
| 41 | 24, 29, 35, 38, 40 | ovmpod 7586 | . . 3
⊢ (𝜑 → (𝑋𝐼𝑌) = {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑋, 𝑌〉}) | 
| 42 | 41 | eleq2d 2826 | . 2
⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑋, 𝑌〉})) | 
| 43 |  | ebtwntg.z | . . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑃) | 
| 44 | 43, 31 | eleqtrdi 2850 | . . . 4
⊢ (𝜑 → 𝑍 ∈ (Base‘(EEG‘𝑁))) | 
| 45 | 44, 34 | eleqtrrd 2843 | . . 3
⊢ (𝜑 → 𝑍 ∈ (𝔼‘𝑁)) | 
| 46 |  | breq1 5145 | . . . 4
⊢ (𝑧 = 𝑍 → (𝑧 Btwn 〈𝑋, 𝑌〉 ↔ 𝑍 Btwn 〈𝑋, 𝑌〉)) | 
| 47 | 46 | elrab3 3692 | . . 3
⊢ (𝑍 ∈ (𝔼‘𝑁) → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑋, 𝑌〉} ↔ 𝑍 Btwn 〈𝑋, 𝑌〉)) | 
| 48 | 45, 47 | syl 17 | . 2
⊢ (𝜑 → (𝑍 ∈ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑋, 𝑌〉} ↔ 𝑍 Btwn 〈𝑋, 𝑌〉)) | 
| 49 | 42, 48 | bitr2d 280 | 1
⊢ (𝜑 → (𝑍 Btwn 〈𝑋, 𝑌〉 ↔ 𝑍 ∈ (𝑋𝐼𝑌))) |