MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ebtwntg Structured version   Visualization version   GIF version

Theorem ebtwntg 27973
Description: The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ebtwntg.1 (πœ‘ β†’ 𝑁 ∈ β„•)
ebtwntg.2 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
ebtwntg.3 𝐼 = (Itvβ€˜(EEGβ€˜π‘))
ebtwntg.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
ebtwntg.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
ebtwntg.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
Assertion
Ref Expression
ebtwntg (πœ‘ β†’ (𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))

Proof of Theorem ebtwntg
Dummy variables π‘₯ 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ebtwntg.3 . . . . 5 𝐼 = (Itvβ€˜(EEGβ€˜π‘))
2 itvid 27423 . . . . . 6 Itv = Slot (Itvβ€˜ndx)
3 fvexd 6862 . . . . . 6 (πœ‘ β†’ (EEGβ€˜π‘) ∈ V)
4 ebtwntg.1 . . . . . . . . 9 (πœ‘ β†’ 𝑁 ∈ β„•)
5 eengstr 27971 . . . . . . . . 9 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
64, 5syl 17 . . . . . . . 8 (πœ‘ β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
7 structn0fun 17030 . . . . . . . 8 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
86, 7syl 17 . . . . . . 7 (πœ‘ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
9 structcnvcnv 17032 . . . . . . . . 9 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
106, 9syl 17 . . . . . . . 8 (πœ‘ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
1110funeqd 6528 . . . . . . 7 (πœ‘ β†’ (Fun β—‘β—‘(EEGβ€˜π‘) ↔ Fun ((EEGβ€˜π‘) βˆ– {βˆ…})))
128, 11mpbird 257 . . . . . 6 (πœ‘ β†’ Fun β—‘β—‘(EEGβ€˜π‘))
13 opex 5426 . . . . . . . . 9 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ V
1413prid1 4728 . . . . . . . 8 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}
15 elun2 4142 . . . . . . . 8 (⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩} β†’ ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
1614, 15ax-mp 5 . . . . . . 7 ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩})
17 eengv 27970 . . . . . . . 8 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
184, 17syl 17 . . . . . . 7 (πœ‘ β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
1916, 18eleqtrrid 2845 . . . . . 6 (πœ‘ β†’ ⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩ ∈ (EEGβ€˜π‘))
20 fvex 6860 . . . . . . . 8 (π”Όβ€˜π‘) ∈ V
2120, 20mpoex 8017 . . . . . . 7 (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) ∈ V
2221a1i 11 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) ∈ V)
232, 3, 12, 19, 22strfv2d 17081 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}) = (Itvβ€˜(EEGβ€˜π‘)))
241, 23eqtr4id 2796 . . . 4 (πœ‘ β†’ 𝐼 = (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©}))
25 simprl 770 . . . . . . 7 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ π‘₯ = 𝑋)
26 simprr 772 . . . . . . 7 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ 𝑦 = π‘Œ)
2725, 26opeq12d 4843 . . . . . 6 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ ⟨π‘₯, π‘¦βŸ© = βŸ¨π‘‹, π‘ŒβŸ©)
2827breq2d 5122 . . . . 5 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ↔ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
2928rabbidv 3418 . . . 4 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©} = {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©})
30 ebtwntg.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝑃)
31 ebtwntg.2 . . . . . 6 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
3230, 31eleqtrdi 2848 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (Baseβ€˜(EEGβ€˜π‘)))
33 eengbas 27972 . . . . . 6 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
344, 33syl 17 . . . . 5 (πœ‘ β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
3532, 34eleqtrrd 2841 . . . 4 (πœ‘ β†’ 𝑋 ∈ (π”Όβ€˜π‘))
36 ebtwntg.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝑃)
3736, 31eleqtrdi 2848 . . . . 5 (πœ‘ β†’ π‘Œ ∈ (Baseβ€˜(EEGβ€˜π‘)))
3837, 34eleqtrrd 2841 . . . 4 (πœ‘ β†’ π‘Œ ∈ (π”Όβ€˜π‘))
3920rabex 5294 . . . . 5 {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ∈ V
4039a1i 11 . . . 4 (πœ‘ β†’ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ∈ V)
4124, 29, 35, 38, 40ovmpod 7512 . . 3 (πœ‘ β†’ (π‘‹πΌπ‘Œ) = {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©})
4241eleq2d 2824 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ↔ 𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©}))
43 ebtwntg.z . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑃)
4443, 31eleqtrdi 2848 . . . 4 (πœ‘ β†’ 𝑍 ∈ (Baseβ€˜(EEGβ€˜π‘)))
4544, 34eleqtrrd 2841 . . 3 (πœ‘ β†’ 𝑍 ∈ (π”Όβ€˜π‘))
46 breq1 5113 . . . 4 (𝑧 = 𝑍 β†’ (𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4746elrab3 3651 . . 3 (𝑍 ∈ (π”Όβ€˜π‘) β†’ (𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4845, 47syl 17 . 2 (πœ‘ β†’ (𝑍 ∈ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn βŸ¨π‘‹, π‘ŒβŸ©} ↔ 𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ©))
4942, 48bitr2d 280 1 (πœ‘ β†’ (𝑍 Btwn βŸ¨π‘‹, π‘ŒβŸ© ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ w3o 1087   = wceq 1542   ∈ wcel 2107  {crab 3410  Vcvv 3448   βˆ– cdif 3912   βˆͺ cun 3913  βˆ…c0 4287  {csn 4591  {cpr 4593  βŸ¨cop 4597   class class class wbr 5110  β—‘ccnv 5637  Fun wfun 6495  β€˜cfv 6501  (class class class)co 7362   ∈ cmpo 7364  1c1 11059   βˆ’ cmin 11392  β„•cn 12160  2c2 12215  7c7 12220  cdc 12625  ...cfz 13431  β†‘cexp 13974  Ξ£csu 15577   Struct cstr 17025  ndxcnx 17072  Basecbs 17090  distcds 17149  Itvcitv 27417  LineGclng 27418  π”Όcee 27879   Btwn cbtwn 27880  EEGceeng 27968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-fz 13432  df-seq 13914  df-sum 15578  df-struct 17026  df-slot 17061  df-ndx 17073  df-base 17091  df-ds 17162  df-itv 27419  df-lng 27420  df-eeng 27969
This theorem is referenced by:  elntg  27975  elntg2  27976  eengtrkg  27977  eengtrkge  27978
  Copyright terms: Public domain W3C validator