MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecgrtg Structured version   Visualization version   GIF version

Theorem ecgrtg 28999
Description: The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ecgrtg.1 (𝜑𝑁 ∈ ℕ)
ecgrtg.2 𝑃 = (Base‘(EEG‘𝑁))
ecgrtg.3 = (dist‘(EEG‘𝑁))
ecgrtg.a (𝜑𝐴𝑃)
ecgrtg.b (𝜑𝐵𝑃)
ecgrtg.c (𝜑𝐶𝑃)
ecgrtg.d (𝜑𝐷𝑃)
Assertion
Ref Expression
ecgrtg (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ (𝐴 𝐵) = (𝐶 𝐷)))

Proof of Theorem ecgrtg
Dummy variables 𝑥 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecgrtg.a . . . 4 (𝜑𝐴𝑃)
2 ecgrtg.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
3 eengbas 28997 . . . . . 6 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
42, 3syl 17 . . . . 5 (𝜑 → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
5 ecgrtg.2 . . . . 5 𝑃 = (Base‘(EEG‘𝑁))
64, 5eqtr4di 2794 . . . 4 (𝜑 → (𝔼‘𝑁) = 𝑃)
71, 6eleqtrrd 2843 . . 3 (𝜑𝐴 ∈ (𝔼‘𝑁))
8 ecgrtg.b . . . 4 (𝜑𝐵𝑃)
98, 6eleqtrrd 2843 . . 3 (𝜑𝐵 ∈ (𝔼‘𝑁))
10 ecgrtg.c . . . 4 (𝜑𝐶𝑃)
1110, 6eleqtrrd 2843 . . 3 (𝜑𝐶 ∈ (𝔼‘𝑁))
12 ecgrtg.d . . . 4 (𝜑𝐷𝑃)
1312, 6eleqtrrd 2843 . . 3 (𝜑𝐷 ∈ (𝔼‘𝑁))
14 brcgr 28916 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
157, 9, 11, 13, 14syl22anc 838 . 2 (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
16 ecgrtg.3 . . . . . 6 = (dist‘(EEG‘𝑁))
17 dsid 17431 . . . . . . 7 dist = Slot (dist‘ndx)
18 fvexd 6920 . . . . . . 7 (𝜑 → (EEG‘𝑁) ∈ V)
19 eengstr 28996 . . . . . . . . . 10 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
202, 19syl 17 . . . . . . . . 9 (𝜑 → (EEG‘𝑁) Struct ⟨1, 17⟩)
21 structn0fun 17189 . . . . . . . . 9 ((EEG‘𝑁) Struct ⟨1, 17⟩ → Fun ((EEG‘𝑁) ∖ {∅}))
2220, 21syl 17 . . . . . . . 8 (𝜑 → Fun ((EEG‘𝑁) ∖ {∅}))
23 structcnvcnv 17191 . . . . . . . . . 10 ((EEG‘𝑁) Struct ⟨1, 17⟩ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
2420, 23syl 17 . . . . . . . . 9 (𝜑(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
2524funeqd 6587 . . . . . . . 8 (𝜑 → (Fun (EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅})))
2622, 25mpbird 257 . . . . . . 7 (𝜑 → Fun (EEG‘𝑁))
27 opex 5468 . . . . . . . . . 10 ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ V
2827prid2 4762 . . . . . . . . 9 ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ {⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩}
29 elun1 4181 . . . . . . . . 9 (⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ {⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} → ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
3028, 29ax-mp 5 . . . . . . . 8 ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩})
31 eengv 28995 . . . . . . . . 9 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
322, 31syl 17 . . . . . . . 8 (𝜑 → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
3330, 32eleqtrrid 2847 . . . . . . 7 (𝜑 → ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩ ∈ (EEG‘𝑁))
34 fvex 6918 . . . . . . . . 9 (𝔼‘𝑁) ∈ V
3534, 34mpoex 8105 . . . . . . . 8 (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)) ∈ V
3635a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)) ∈ V)
3717, 18, 26, 33, 36strfv2d 17239 . . . . . 6 (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)) = (dist‘(EEG‘𝑁)))
3816, 37eqtr4id 2795 . . . . 5 (𝜑 = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2)))
39 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑥 = 𝐴)
4039fveq1d 6907 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (𝐴𝑖))
41 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑦 = 𝐵)
4241fveq1d 6907 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) = (𝐵𝑖))
4340, 42oveq12d 7450 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) − (𝑦𝑖)) = ((𝐴𝑖) − (𝐵𝑖)))
4443oveq1d 7447 . . . . . 6 (((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑦𝑖))↑2) = (((𝐴𝑖) − (𝐵𝑖))↑2))
4544sumeq2dv 15739 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
46 sumex 15725 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ V
4746a1i 11 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) ∈ V)
4838, 45, 7, 9, 47ovmpod 7586 . . . 4 (𝜑 → (𝐴 𝐵) = Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2))
4948eqcomd 2742 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = (𝐴 𝐵))
50 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑥 = 𝐶)
5150fveq1d 6907 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (𝐶𝑖))
52 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑦 = 𝐷)
5352fveq1d 6907 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) = (𝐷𝑖))
5451, 53oveq12d 7450 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) − (𝑦𝑖)) = ((𝐶𝑖) − (𝐷𝑖)))
5554oveq1d 7447 . . . . . 6 (((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑦𝑖))↑2) = (((𝐶𝑖) − (𝐷𝑖))↑2))
5655sumeq2dv 15739 . . . . 5 ((𝜑 ∧ (𝑥 = 𝐶𝑦 = 𝐷)) → Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
57 sumex 15725 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ V
5857a1i 11 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ∈ V)
5938, 56, 11, 13, 58ovmpod 7586 . . . 4 (𝜑 → (𝐶 𝐷) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
6059eqcomd 2742 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) = (𝐶 𝐷))
6149, 60eqeq12d 2752 . 2 (𝜑 → (Σ𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐵𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ (𝐴 𝐵) = (𝐶 𝐷)))
6215, 61bitrd 279 1 (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ (𝐴 𝐵) = (𝐶 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  cdif 3947  cun 3948  c0 4332  {csn 4625  {cpr 4627  cop 4631   class class class wbr 5142  ccnv 5683  Fun wfun 6554  cfv 6560  (class class class)co 7432  cmpo 7434  1c1 11157  cmin 11493  cn 12267  2c2 12322  7c7 12327  cdc 12735  ...cfz 13548  cexp 14103  Σcsu 15723   Struct cstr 17184  ndxcnx 17231  Basecbs 17248  distcds 17307  Itvcitv 28442  LineGclng 28443  𝔼cee 28904   Btwn cbtwn 28905  Cgrccgr 28906  EEGceeng 28993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-seq 14044  df-sum 15724  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-ds 17320  df-itv 28444  df-lng 28445  df-ee 28907  df-cgr 28909  df-eeng 28994
This theorem is referenced by:  eengtrkg  29002
  Copyright terms: Public domain W3C validator