MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecgrtg Structured version   Visualization version   GIF version

Theorem ecgrtg 28674
Description: The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
ecgrtg.1 (πœ‘ β†’ 𝑁 ∈ β„•)
ecgrtg.2 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
ecgrtg.3 βˆ’ = (distβ€˜(EEGβ€˜π‘))
ecgrtg.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
ecgrtg.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
ecgrtg.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
ecgrtg.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
Assertion
Ref Expression
ecgrtg (πœ‘ β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐢, 𝐷⟩ ↔ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷)))

Proof of Theorem ecgrtg
Dummy variables π‘₯ 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecgrtg.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
2 ecgrtg.1 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ β„•)
3 eengbas 28672 . . . . . 6 (𝑁 ∈ β„• β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
42, 3syl 17 . . . . 5 (πœ‘ β†’ (π”Όβ€˜π‘) = (Baseβ€˜(EEGβ€˜π‘)))
5 ecgrtg.2 . . . . 5 𝑃 = (Baseβ€˜(EEGβ€˜π‘))
64, 5eqtr4di 2789 . . . 4 (πœ‘ β†’ (π”Όβ€˜π‘) = 𝑃)
71, 6eleqtrrd 2835 . . 3 (πœ‘ β†’ 𝐴 ∈ (π”Όβ€˜π‘))
8 ecgrtg.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
98, 6eleqtrrd 2835 . . 3 (πœ‘ β†’ 𝐡 ∈ (π”Όβ€˜π‘))
10 ecgrtg.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
1110, 6eleqtrrd 2835 . . 3 (πœ‘ β†’ 𝐢 ∈ (π”Όβ€˜π‘))
12 ecgrtg.d . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
1312, 6eleqtrrd 2835 . . 3 (πœ‘ β†’ 𝐷 ∈ (π”Όβ€˜π‘))
14 brcgr 28591 . . 3 (((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐢, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2)))
157, 9, 11, 13, 14syl22anc 836 . 2 (πœ‘ β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐢, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2)))
16 ecgrtg.3 . . . . . 6 βˆ’ = (distβ€˜(EEGβ€˜π‘))
17 dsid 17338 . . . . . . 7 dist = Slot (distβ€˜ndx)
18 fvexd 6906 . . . . . . 7 (πœ‘ β†’ (EEGβ€˜π‘) ∈ V)
19 eengstr 28671 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
202, 19syl 17 . . . . . . . . 9 (πœ‘ β†’ (EEGβ€˜π‘) Struct ⟨1, 17⟩)
21 structn0fun 17091 . . . . . . . . 9 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
2220, 21syl 17 . . . . . . . 8 (πœ‘ β†’ Fun ((EEGβ€˜π‘) βˆ– {βˆ…}))
23 structcnvcnv 17093 . . . . . . . . . 10 ((EEGβ€˜π‘) Struct ⟨1, 17⟩ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
2420, 23syl 17 . . . . . . . . 9 (πœ‘ β†’ β—‘β—‘(EEGβ€˜π‘) = ((EEGβ€˜π‘) βˆ– {βˆ…}))
2524funeqd 6570 . . . . . . . 8 (πœ‘ β†’ (Fun β—‘β—‘(EEGβ€˜π‘) ↔ Fun ((EEGβ€˜π‘) βˆ– {βˆ…})))
2622, 25mpbird 257 . . . . . . 7 (πœ‘ β†’ Fun β—‘β—‘(EEGβ€˜π‘))
27 opex 5464 . . . . . . . . . 10 ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩ ∈ V
2827prid2 4767 . . . . . . . . 9 ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩ ∈ {⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩}
29 elun1 4176 . . . . . . . . 9 (⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩ ∈ {⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} β†’ ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
3028, 29ax-mp 5 . . . . . . . 8 ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩ ∈ ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩})
31 eengv 28670 . . . . . . . . 9 (𝑁 ∈ β„• β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
322, 31syl 17 . . . . . . . 8 (πœ‘ β†’ (EEGβ€˜π‘) = ({⟨(Baseβ€˜ndx), (π”Όβ€˜π‘)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩} βˆͺ {⟨(Itvβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ 𝑧 Btwn ⟨π‘₯, π‘¦βŸ©})⟩, ⟨(LineGβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ ((π”Όβ€˜π‘) βˆ– {π‘₯}) ↦ {𝑧 ∈ (π”Όβ€˜π‘) ∣ (𝑧 Btwn ⟨π‘₯, π‘¦βŸ© ∨ π‘₯ Btwn βŸ¨π‘§, π‘¦βŸ© ∨ 𝑦 Btwn ⟨π‘₯, π‘§βŸ©)})⟩}))
3330, 32eleqtrrid 2839 . . . . . . 7 (πœ‘ β†’ ⟨(distβ€˜ndx), (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2))⟩ ∈ (EEGβ€˜π‘))
34 fvex 6904 . . . . . . . . 9 (π”Όβ€˜π‘) ∈ V
3534, 34mpoex 8070 . . . . . . . 8 (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)) ∈ V
3635a1i 11 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)) ∈ V)
3717, 18, 26, 33, 36strfv2d 17142 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)) = (distβ€˜(EEGβ€˜π‘)))
3816, 37eqtr4id 2790 . . . . 5 (πœ‘ β†’ βˆ’ = (π‘₯ ∈ (π”Όβ€˜π‘), 𝑦 ∈ (π”Όβ€˜π‘) ↦ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2)))
39 simplrl 774 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) ∧ 𝑖 ∈ (1...𝑁)) β†’ π‘₯ = 𝐴)
4039fveq1d 6893 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘₯β€˜π‘–) = (π΄β€˜π‘–))
41 simplrr 775 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) ∧ 𝑖 ∈ (1...𝑁)) β†’ 𝑦 = 𝐡)
4241fveq1d 6893 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘¦β€˜π‘–) = (π΅β€˜π‘–))
4340, 42oveq12d 7430 . . . . . . 7 (((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) ∧ 𝑖 ∈ (1...𝑁)) β†’ ((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–)) = ((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–)))
4443oveq1d 7427 . . . . . 6 (((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) ∧ 𝑖 ∈ (1...𝑁)) β†’ (((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2) = (((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2))
4544sumeq2dv 15656 . . . . 5 ((πœ‘ ∧ (π‘₯ = 𝐴 ∧ 𝑦 = 𝐡)) β†’ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2))
46 sumex 15641 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2) ∈ V
4746a1i 11 . . . . 5 (πœ‘ β†’ Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2) ∈ V)
4838, 45, 7, 9, 47ovmpod 7563 . . . 4 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2))
4948eqcomd 2737 . . 3 (πœ‘ β†’ Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2) = (𝐴 βˆ’ 𝐡))
50 simplrl 774 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ = 𝐢 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) β†’ π‘₯ = 𝐢)
5150fveq1d 6893 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ = 𝐢 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘₯β€˜π‘–) = (πΆβ€˜π‘–))
52 simplrr 775 . . . . . . . . 9 (((πœ‘ ∧ (π‘₯ = 𝐢 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) β†’ 𝑦 = 𝐷)
5352fveq1d 6893 . . . . . . . 8 (((πœ‘ ∧ (π‘₯ = 𝐢 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) β†’ (π‘¦β€˜π‘–) = (π·β€˜π‘–))
5451, 53oveq12d 7430 . . . . . . 7 (((πœ‘ ∧ (π‘₯ = 𝐢 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) β†’ ((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–)) = ((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–)))
5554oveq1d 7427 . . . . . 6 (((πœ‘ ∧ (π‘₯ = 𝐢 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) β†’ (((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2) = (((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2))
5655sumeq2dv 15656 . . . . 5 ((πœ‘ ∧ (π‘₯ = 𝐢 ∧ 𝑦 = 𝐷)) β†’ Σ𝑖 ∈ (1...𝑁)(((π‘₯β€˜π‘–) βˆ’ (π‘¦β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2))
57 sumex 15641 . . . . . 6 Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2) ∈ V
5857a1i 11 . . . . 5 (πœ‘ β†’ Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2) ∈ V)
5938, 56, 11, 13, 58ovmpod 7563 . . . 4 (πœ‘ β†’ (𝐢 βˆ’ 𝐷) = Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2))
6059eqcomd 2737 . . 3 (πœ‘ β†’ Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2) = (𝐢 βˆ’ 𝐷))
6149, 60eqeq12d 2747 . 2 (πœ‘ β†’ (Σ𝑖 ∈ (1...𝑁)(((π΄β€˜π‘–) βˆ’ (π΅β€˜π‘–))↑2) = Σ𝑖 ∈ (1...𝑁)(((πΆβ€˜π‘–) βˆ’ (π·β€˜π‘–))↑2) ↔ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷)))
6215, 61bitrd 279 1 (πœ‘ β†’ (⟨𝐴, 𝐡⟩Cgr⟨𝐢, 𝐷⟩ ↔ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ w3o 1085   = wceq 1540   ∈ wcel 2105  {crab 3431  Vcvv 3473   βˆ– cdif 3945   βˆͺ cun 3946  βˆ…c0 4322  {csn 4628  {cpr 4630  βŸ¨cop 4634   class class class wbr 5148  β—‘ccnv 5675  Fun wfun 6537  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  1c1 11117   βˆ’ cmin 11451  β„•cn 12219  2c2 12274  7c7 12279  cdc 12684  ...cfz 13491  β†‘cexp 14034  Ξ£csu 15639   Struct cstr 17086  ndxcnx 17133  Basecbs 17151  distcds 17213  Itvcitv 28117  LineGclng 28118  π”Όcee 28579   Btwn cbtwn 28580  Cgrccgr 28581  EEGceeng 28668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-seq 13974  df-sum 15640  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-ds 17226  df-itv 28119  df-lng 28120  df-ee 28582  df-cgr 28584  df-eeng 28669
This theorem is referenced by:  eengtrkg  28677
  Copyright terms: Public domain W3C validator