| Step | Hyp | Ref
| Expression |
| 1 | | ecgrtg.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 2 | | ecgrtg.1 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 3 | | eengbas 28965 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
| 4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) |
| 5 | | ecgrtg.2 |
. . . . 5
⊢ 𝑃 = (Base‘(EEG‘𝑁)) |
| 6 | 4, 5 | eqtr4di 2789 |
. . . 4
⊢ (𝜑 → (𝔼‘𝑁) = 𝑃) |
| 7 | 1, 6 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) |
| 8 | | ecgrtg.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 9 | 8, 6 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) |
| 10 | | ecgrtg.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 11 | 10, 6 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) |
| 12 | | ecgrtg.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 13 | 12, 6 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) |
| 14 | | brcgr 28884 |
. . 3
⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 15 | 7, 9, 11, 13, 14 | syl22anc 838 |
. 2
⊢ (𝜑 → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) |
| 16 | | ecgrtg.3 |
. . . . . 6
⊢ − =
(dist‘(EEG‘𝑁)) |
| 17 | | dsid 17405 |
. . . . . . 7
⊢ dist =
Slot (dist‘ndx) |
| 18 | | fvexd 6896 |
. . . . . . 7
⊢ (𝜑 → (EEG‘𝑁) ∈ V) |
| 19 | | eengstr 28964 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) Struct
〈1, ;17〉) |
| 20 | 2, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (EEG‘𝑁) Struct 〈1, ;17〉) |
| 21 | | structn0fun 17175 |
. . . . . . . . 9
⊢
((EEG‘𝑁)
Struct 〈1, ;17〉 →
Fun ((EEG‘𝑁) ∖
{∅})) |
| 22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → Fun ((EEG‘𝑁) ∖
{∅})) |
| 23 | | structcnvcnv 17177 |
. . . . . . . . . 10
⊢
((EEG‘𝑁)
Struct 〈1, ;17〉 →
◡◡(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅})) |
| 24 | 20, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ◡◡(EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅})) |
| 25 | 24 | funeqd 6563 |
. . . . . . . 8
⊢ (𝜑 → (Fun ◡◡(EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅}))) |
| 26 | 22, 25 | mpbird 257 |
. . . . . . 7
⊢ (𝜑 → Fun ◡◡(EEG‘𝑁)) |
| 27 | | opex 5444 |
. . . . . . . . . 10
⊢
〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 ∈ V |
| 28 | 27 | prid2 4744 |
. . . . . . . . 9
⊢
〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 ∈
{〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} |
| 29 | | elun1 4162 |
. . . . . . . . 9
⊢
(〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 ∈
{〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} →
〈(dist‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 ∈
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
⊢
〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 ∈
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉}) |
| 31 | | eengv 28963 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(EEG‘𝑁) =
({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
| 32 | 2, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (EEG‘𝑁) = ({〈(Base‘ndx),
(𝔼‘𝑁)〉,
〈(dist‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑁),
𝑦 ∈
(𝔼‘𝑁) ↦
{𝑧 ∈
(𝔼‘𝑁) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
| 33 | 30, 32 | eleqtrrid 2842 |
. . . . . . 7
⊢ (𝜑 → 〈(dist‘ndx),
(𝑥 ∈
(𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉 ∈ (EEG‘𝑁)) |
| 34 | | fvex 6894 |
. . . . . . . . 9
⊢
(𝔼‘𝑁)
∈ V |
| 35 | 34, 34 | mpoex 8083 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2)) ∈ V |
| 36 | 35 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2)) ∈ V) |
| 37 | 17, 18, 26, 33, 36 | strfv2d 17225 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2)) = (dist‘(EEG‘𝑁))) |
| 38 | 16, 37 | eqtr4id 2790 |
. . . . 5
⊢ (𝜑 → − = (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))) |
| 39 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑥 = 𝐴) |
| 40 | 39 | fveq1d 6883 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) = (𝐴‘𝑖)) |
| 41 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑦 = 𝐵) |
| 42 | 41 | fveq1d 6883 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) = (𝐵‘𝑖)) |
| 43 | 40, 42 | oveq12d 7428 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) − (𝑦‘𝑖)) = ((𝐴‘𝑖) − (𝐵‘𝑖))) |
| 44 | 43 | oveq1d 7425 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑦‘𝑖))↑2) = (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
| 45 | 44 | sumeq2dv 15723 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
| 46 | | sumex 15709 |
. . . . . 6
⊢
Σ𝑖 ∈
(1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ V |
| 47 | 46 | a1i 11 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ V) |
| 48 | 38, 45, 7, 9, 47 | ovmpod 7564 |
. . . 4
⊢ (𝜑 → (𝐴 − 𝐵) = Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
| 49 | 48 | eqcomd 2742 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = (𝐴 − 𝐵)) |
| 50 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑥 = 𝐶) |
| 51 | 50 | fveq1d 6883 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) = (𝐶‘𝑖)) |
| 52 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑦 = 𝐷) |
| 53 | 52 | fveq1d 6883 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) = (𝐷‘𝑖)) |
| 54 | 51, 53 | oveq12d 7428 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) − (𝑦‘𝑖)) = ((𝐶‘𝑖) − (𝐷‘𝑖))) |
| 55 | 54 | oveq1d 7425 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑦‘𝑖))↑2) = (((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |
| 56 | 55 | sumeq2dv 15723 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) → Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |
| 57 | | sumex 15709 |
. . . . . 6
⊢
Σ𝑖 ∈
(1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) ∈ V |
| 58 | 57 | a1i 11 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) ∈ V) |
| 59 | 38, 56, 11, 13, 58 | ovmpod 7564 |
. . . 4
⊢ (𝜑 → (𝐶 − 𝐷) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) |
| 60 | 59 | eqcomd 2742 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) = (𝐶 − 𝐷)) |
| 61 | 49, 60 | eqeq12d 2752 |
. 2
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2) ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷))) |
| 62 | 15, 61 | bitrd 279 |
1
⊢ (𝜑 → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷))) |