![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmscaf | Structured version Visualization version GIF version |
Description: Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
rlmscaf | ⊢ (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 19976 | . . 3 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
4 | eqid 2733 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 4 | mgpplusg 19974 | . . 3 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
6 | eqid 2733 | . . 3 ⊢ (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅)) | |
7 | 3, 5, 6 | plusffval 18554 | . 2 ⊢ (+𝑓‘(mulGrp‘𝑅)) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (𝑥(.r‘𝑅)𝑦)) |
8 | rlmbas 20793 | . . 3 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
9 | rlmsca2 20799 | . . 3 ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | |
10 | baseid 17134 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
11 | 10, 2 | strfvi 17110 | . . 3 ⊢ (Base‘𝑅) = (Base‘( I ‘𝑅)) |
12 | eqid 2733 | . . 3 ⊢ ( ·sf ‘(ringLMod‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) | |
13 | rlmvsca 20800 | . . 3 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
14 | 8, 9, 11, 12, 13 | scaffval 20467 | . 2 ⊢ ( ·sf ‘(ringLMod‘𝑅)) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑅) ↦ (𝑥(.r‘𝑅)𝑦)) |
15 | 7, 14 | eqtr4i 2764 | 1 ⊢ (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 I cid 5569 ‘cfv 6535 (class class class)co 7396 ∈ cmpo 7398 ndxcnx 17113 Basecbs 17131 .rcmulr 17185 +𝑓cplusf 18545 mulGrpcmgp 19970 ·sf cscaf 20449 ringLModcrglmod 20759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-ress 17161 df-plusg 17197 df-sca 17200 df-vsca 17201 df-ip 17202 df-plusf 18547 df-mgp 19971 df-scaf 20451 df-sra 20762 df-rgmod 20763 |
This theorem is referenced by: nrgtrg 24176 |
Copyright terms: Public domain | W3C validator |