MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islidl Structured version   Visualization version   GIF version

Theorem islidl 19573
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s 𝑈 = (LIdeal‘𝑅)
islidl.b 𝐵 = (Base‘𝑅)
islidl.p + = (+g𝑅)
islidl.t · = (.r𝑅)
Assertion
Ref Expression
islidl (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵   𝐼,𝑎,𝑏,𝑥   𝑅,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝑈(𝑥,𝑎,𝑏)

Proof of Theorem islidl
StepHypRef Expression
1 rlmsca2 19563 . 2 ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
2 baseid 16283 . . 3 Base = Slot (Base‘ndx)
3 islidl.b . . 3 𝐵 = (Base‘𝑅)
42, 3strfvi 16277 . 2 𝐵 = (Base‘( I ‘𝑅))
5 rlmbas 19557 . . 3 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
63, 5eqtri 2850 . 2 𝐵 = (Base‘(ringLMod‘𝑅))
7 islidl.p . . 3 + = (+g𝑅)
8 rlmplusg 19558 . . 3 (+g𝑅) = (+g‘(ringLMod‘𝑅))
97, 8eqtri 2850 . 2 + = (+g‘(ringLMod‘𝑅))
10 islidl.t . . 3 · = (.r𝑅)
11 rlmvsca 19564 . . 3 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2850 . 2 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 islidl.s . . 3 𝑈 = (LIdeal‘𝑅)
14 lidlval 19554 . . 3 (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))
1513, 14eqtri 2850 . 2 𝑈 = (LSubSp‘(ringLMod‘𝑅))
161, 4, 6, 9, 12, 15islss 19292 1 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 198  w3a 1113   = wceq 1658  wcel 2166  wne 3000  wral 3118  wss 3799  c0 4145   I cid 5250  cfv 6124  (class class class)co 6906  ndxcnx 16220  Basecbs 16223  +gcplusg 16306  .rcmulr 16307   ·𝑠 cvsca 16310  LSubSpclss 19289  ringLModcrglmod 19531  LIdealclidl 19532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-sca 16322  df-vsca 16323  df-ip 16324  df-lss 19290  df-sra 19534  df-rgmod 19535  df-lidl 19536
This theorem is referenced by:  hbtlem2  38538  2zlidl  42782
  Copyright terms: Public domain W3C validator