MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islidl Structured version   Visualization version   GIF version

Theorem islidl 21140
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s 𝑈 = (LIdeal‘𝑅)
islidl.b 𝐵 = (Base‘𝑅)
islidl.p + = (+g𝑅)
islidl.t · = (.r𝑅)
Assertion
Ref Expression
islidl (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵   𝐼,𝑎,𝑏,𝑥   𝑅,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝑈(𝑥,𝑎,𝑏)

Proof of Theorem islidl
StepHypRef Expression
1 rlmsca2 21121 . 2 ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
2 baseid 17141 . . 3 Base = Slot (Base‘ndx)
3 islidl.b . . 3 𝐵 = (Base‘𝑅)
42, 3strfvi 17119 . 2 𝐵 = (Base‘( I ‘𝑅))
5 rlmbas 21115 . . 3 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
63, 5eqtri 2752 . 2 𝐵 = (Base‘(ringLMod‘𝑅))
7 islidl.p . . 3 + = (+g𝑅)
8 rlmplusg 21116 . . 3 (+g𝑅) = (+g‘(ringLMod‘𝑅))
97, 8eqtri 2752 . 2 + = (+g‘(ringLMod‘𝑅))
10 islidl.t . . 3 · = (.r𝑅)
11 rlmvsca 21122 . . 3 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2752 . 2 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 islidl.s . . 3 𝑈 = (LIdeal‘𝑅)
14 lidlval 21135 . . 3 (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))
1513, 14eqtri 2752 . 2 𝑈 = (LSubSp‘(ringLMod‘𝑅))
161, 4, 6, 9, 12, 15islss 20855 1 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3905  c0 4286   I cid 5517  cfv 6486  (class class class)co 7353  ndxcnx 17122  Basecbs 17138  +gcplusg 17179  .rcmulr 17180   ·𝑠 cvsca 17183  LSubSpclss 20852  ringLModcrglmod 21094  LIdealclidl 21131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-sca 17195  df-vsca 17196  df-ip 17197  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133
This theorem is referenced by:  rnglidlmcl  21141  dflidl2rng  21143  rnglidl0  21154  rnglidl1  21157  rhmpreimaidl  21202  intlidl  33367  idlinsubrg  33378  rhmimaidl  33379  ssdifidllem  33403  ssmxidllem  33420  opprlidlabs  33432  hbtlem2  43097  2zlidl  48212
  Copyright terms: Public domain W3C validator