Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1tmcl | Structured version Visualization version GIF version |
Description: Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 25-Nov-2019.) |
Ref | Expression |
---|---|
ply1tmcl.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1tmcl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1tmcl.x | ⊢ 𝑋 = (var1‘𝑅) |
ply1tmcl.m | ⊢ · = ( ·𝑠 ‘𝑃) |
ply1tmcl.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
ply1tmcl.e | ⊢ ↑ = (.g‘𝑁) |
ply1tmcl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
ply1tmcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1tmcl.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1lmod 21495 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
3 | 2 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝑃 ∈ LMod) |
4 | simp2 1136 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → 𝐶 ∈ 𝐾) | |
5 | ply1tmcl.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
6 | ply1tmcl.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
7 | ply1tmcl.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
8 | ply1tmcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | 1, 5, 6, 7, 8 | ply1moncl 21514 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) ∈ 𝐵) |
10 | 9 | 3adant2 1130 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) ∈ 𝐵) |
11 | 1 | ply1sca2 21497 | . . 3 ⊢ ( I ‘𝑅) = (Scalar‘𝑃) |
12 | ply1tmcl.m | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
13 | baseid 16985 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
14 | ply1tmcl.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
15 | 13, 14 | strfvi 16961 | . . 3 ⊢ 𝐾 = (Base‘( I ‘𝑅)) |
16 | 8, 11, 12, 15 | lmodvscl 20212 | . 2 ⊢ ((𝑃 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ (𝐷 ↑ 𝑋) ∈ 𝐵) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) |
17 | 3, 4, 10, 16 | syl3anc 1370 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 I cid 5506 ‘cfv 6465 (class class class)co 7315 ℕ0cn0 12306 ndxcnx 16964 Basecbs 16982 ·𝑠 cvsca 17036 .gcmg 18769 mulGrpcmgp 19788 Ringcrg 19851 LModclmod 20195 var1cv1 21419 Poly1cpl1 21420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-ofr 7574 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-pm 8666 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-oi 9339 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-fz 13313 df-fzo 13456 df-seq 13795 df-hash 14118 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-sca 17048 df-vsca 17049 df-tset 17051 df-ple 17052 df-0g 17222 df-gsum 17223 df-mre 17365 df-mrc 17366 df-acs 17368 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-mhm 18500 df-submnd 18501 df-grp 18649 df-minusg 18650 df-sbg 18651 df-mulg 18770 df-subg 18821 df-ghm 18901 df-cntz 18992 df-cmn 19456 df-abl 19457 df-mgp 19789 df-ur 19806 df-ring 19853 df-subrg 20094 df-lmod 20197 df-lss 20266 df-psr 21184 df-mvr 21185 df-mpl 21186 df-opsr 21188 df-psr1 21423 df-vr1 21424 df-ply1 21425 |
This theorem is referenced by: coe1tm 21516 coe1tmmul2 21519 coe1tmmul 21520 gsumsmonply1 21546 gsummoncoe1 21547 pmatcollpw1 21997 pmatcollpw2 21999 pmatcollpw 22002 pmatcollpwscmatlem2 22011 pm2mpcl 22018 mp2pm2mplem2 22028 mp2pm2mplem4 22030 mp2pm2mp 22032 pm2mpghmlem1 22034 deg1tmle 25354 deg1tm 25355 ply1divex 25373 |
Copyright terms: Public domain | W3C validator |