![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidlrsppropd | Structured version Visualization version GIF version |
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lidlpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lidlpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lidlpropd.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
lidlpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lidlpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) |
lidlpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
lidlrsppropd | ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | rlmbas 19702 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(ringLMod‘𝐾)) | |
3 | 1, 2 | syl6eq 2825 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐾))) |
4 | lidlpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
5 | rlmbas 19702 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(ringLMod‘𝐿)) | |
6 | 4, 5 | syl6eq 2825 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐿))) |
7 | lidlpropd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
8 | lidlpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
9 | rlmplusg 19703 | . . . . . 6 ⊢ (+g‘𝐾) = (+g‘(ringLMod‘𝐾)) | |
10 | 9 | oveqi 6988 | . . . . 5 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦) |
11 | rlmplusg 19703 | . . . . . 6 ⊢ (+g‘𝐿) = (+g‘(ringLMod‘𝐿)) | |
12 | 11 | oveqi 6988 | . . . . 5 ⊢ (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦) |
13 | 8, 10, 12 | 3eqtr3g 2832 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
14 | rlmvsca 19709 | . . . . . 6 ⊢ (.r‘𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)) | |
15 | 14 | oveqi 6988 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) |
16 | lidlpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) | |
17 | 15, 16 | syl5eqelr 2866 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊) |
18 | lidlpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
19 | rlmvsca 19709 | . . . . . 6 ⊢ (.r‘𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)) | |
20 | 19 | oveqi 6988 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦) |
21 | 18, 15, 20 | 3eqtr3g 2832 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)) |
22 | baseid 16398 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
23 | eqid 2773 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
24 | 22, 23 | strfvi 16392 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘( I ‘𝐾)) |
25 | rlmsca2 19708 | . . . . . . 7 ⊢ ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾)) | |
26 | 25 | fveq2i 6500 | . . . . . 6 ⊢ (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
27 | 24, 26 | eqtri 2797 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
28 | 1, 27 | syl6eq 2825 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾)))) |
29 | eqid 2773 | . . . . . . 7 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
30 | 22, 29 | strfvi 16392 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘( I ‘𝐿)) |
31 | rlmsca2 19708 | . . . . . . 7 ⊢ ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿)) | |
32 | 31 | fveq2i 6500 | . . . . . 6 ⊢ (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
33 | 30, 32 | eqtri 2797 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
34 | 4, 33 | syl6eq 2825 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿)))) |
35 | 3, 6, 7, 13, 17, 21, 28, 34 | lsspropd 19524 | . . 3 ⊢ (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿))) |
36 | lidlval 19699 | . . 3 ⊢ (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)) | |
37 | lidlval 19699 | . . 3 ⊢ (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)) | |
38 | 35, 36, 37 | 3eqtr4g 2834 | . 2 ⊢ (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿)) |
39 | fvexd 6512 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐾) ∈ V) | |
40 | fvexd 6512 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐿) ∈ V) | |
41 | 3, 6, 7, 13, 17, 21, 28, 34, 39, 40 | lsppropd 19525 | . . 3 ⊢ (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿))) |
42 | rspval 19700 | . . 3 ⊢ (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)) | |
43 | rspval 19700 | . . 3 ⊢ (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)) | |
44 | 41, 42, 43 | 3eqtr4g 2834 | . 2 ⊢ (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿)) |
45 | 38, 44 | jca 504 | 1 ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ⊆ wss 3824 I cid 5308 ‘cfv 6186 (class class class)co 6975 ndxcnx 16335 Basecbs 16338 +gcplusg 16420 .rcmulr 16421 Scalarcsca 16423 ·𝑠 cvsca 16424 LSubSpclss 19438 LSpanclspn 19478 ringLModcrglmod 19676 LIdealclidl 19677 RSpancrsp 19678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-sca 16436 df-vsca 16437 df-ip 16438 df-lss 19439 df-lsp 19479 df-sra 19679 df-rgmod 19680 df-lidl 19681 df-rsp 19682 |
This theorem is referenced by: crngridl 19745 |
Copyright terms: Public domain | W3C validator |