MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlrsppropd Structured version   Visualization version   GIF version

Theorem lidlrsppropd 21138
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1 (𝜑𝐵 = (Base‘𝐾))
lidlpropd.2 (𝜑𝐵 = (Base‘𝐿))
lidlpropd.3 (𝜑𝐵𝑊)
lidlpropd.4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lidlpropd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
lidlpropd.6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
lidlrsppropd (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦

Proof of Theorem lidlrsppropd
StepHypRef Expression
1 lidlpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 rlmbas 21085 . . . . 5 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
31, 2eqtrdi 2781 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐾)))
4 lidlpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
5 rlmbas 21085 . . . . 5 (Base‘𝐿) = (Base‘(ringLMod‘𝐿))
64, 5eqtrdi 2781 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐿)))
7 lidlpropd.3 . . . 4 (𝜑𝐵𝑊)
8 lidlpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 rlmplusg 21086 . . . . . 6 (+g𝐾) = (+g‘(ringLMod‘𝐾))
109oveqi 7426 . . . . 5 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦)
11 rlmplusg 21086 . . . . . 6 (+g𝐿) = (+g‘(ringLMod‘𝐿))
1211oveqi 7426 . . . . 5 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)
138, 10, 123eqtr3g 2788 . . . 4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
14 rlmvsca 21092 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
1514oveqi 7426 . . . . 5 (𝑥(.r𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦)
16 lidlpropd.5 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
1715, 16eqeltrrid 2830 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊)
18 lidlpropd.6 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
19 rlmvsca 21092 . . . . . 6 (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿))
2019oveqi 7426 . . . . 5 (𝑥(.r𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)
2118, 15, 203eqtr3g 2788 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
22 baseid 17177 . . . . . . 7 Base = Slot (Base‘ndx)
23 eqid 2725 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2422, 23strfvi 17153 . . . . . 6 (Base‘𝐾) = (Base‘( I ‘𝐾))
25 rlmsca2 21091 . . . . . . 7 ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾))
2625fveq2i 6893 . . . . . 6 (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾)))
2724, 26eqtri 2753 . . . . 5 (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾)))
281, 27eqtrdi 2781 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾))))
29 eqid 2725 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
3022, 29strfvi 17153 . . . . . 6 (Base‘𝐿) = (Base‘( I ‘𝐿))
31 rlmsca2 21091 . . . . . . 7 ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿))
3231fveq2i 6893 . . . . . 6 (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿)))
3330, 32eqtri 2753 . . . . 5 (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿)))
344, 33eqtrdi 2781 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿))))
353, 6, 7, 13, 17, 21, 28, 34lsspropd 20901 . . 3 (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿)))
36 lidlval 21105 . . 3 (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾))
37 lidlval 21105 . . 3 (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿))
3835, 36, 373eqtr4g 2790 . 2 (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿))
39 fvexd 6905 . . . 4 (𝜑 → (ringLMod‘𝐾) ∈ V)
40 fvexd 6905 . . . 4 (𝜑 → (ringLMod‘𝐿) ∈ V)
413, 6, 7, 13, 17, 21, 28, 34, 39, 40lsppropd 20902 . . 3 (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿)))
42 rspval 21106 . . 3 (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾))
43 rspval 21106 . . 3 (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿))
4441, 42, 433eqtr4g 2790 . 2 (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿))
4538, 44jca 510 1 (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  wss 3941   I cid 5570  cfv 6543  (class class class)co 7413  ndxcnx 17156  Basecbs 17174  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  LSubSpclss 20814  LSpanclspn 20854  ringLModcrglmod 21056  LIdealclidl 21101  RSpancrsp 21102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-sca 17243  df-vsca 17244  df-ip 17245  df-lss 20815  df-lsp 20855  df-sra 21057  df-rgmod 21058  df-lidl 21103  df-rsp 21104
This theorem is referenced by:  crngridl  21171
  Copyright terms: Public domain W3C validator