| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidlrsppropd | Structured version Visualization version GIF version | ||
| Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| lidlpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| lidlpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| lidlpropd.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| lidlpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lidlpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) |
| lidlpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| lidlrsppropd | ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | rlmbas 21133 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(ringLMod‘𝐾)) | |
| 3 | 1, 2 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐾))) |
| 4 | lidlpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 5 | rlmbas 21133 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(ringLMod‘𝐿)) | |
| 6 | 4, 5 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐿))) |
| 7 | lidlpropd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
| 8 | lidlpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 9 | rlmplusg 21134 | . . . . . 6 ⊢ (+g‘𝐾) = (+g‘(ringLMod‘𝐾)) | |
| 10 | 9 | oveqi 7365 | . . . . 5 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦) |
| 11 | rlmplusg 21134 | . . . . . 6 ⊢ (+g‘𝐿) = (+g‘(ringLMod‘𝐿)) | |
| 12 | 11 | oveqi 7365 | . . . . 5 ⊢ (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦) |
| 13 | 8, 10, 12 | 3eqtr3g 2789 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
| 14 | rlmvsca 21140 | . . . . . 6 ⊢ (.r‘𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)) | |
| 15 | 14 | oveqi 7365 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) |
| 16 | lidlpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) | |
| 17 | 15, 16 | eqeltrrid 2836 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊) |
| 18 | lidlpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 19 | rlmvsca 21140 | . . . . . 6 ⊢ (.r‘𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)) | |
| 20 | 19 | oveqi 7365 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦) |
| 21 | 18, 15, 20 | 3eqtr3g 2789 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)) |
| 22 | baseid 17129 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
| 23 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 24 | 22, 23 | strfvi 17107 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘( I ‘𝐾)) |
| 25 | rlmsca2 21139 | . . . . . . 7 ⊢ ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾)) | |
| 26 | 25 | fveq2i 6831 | . . . . . 6 ⊢ (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
| 27 | 24, 26 | eqtri 2754 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
| 28 | 1, 27 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾)))) |
| 29 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 30 | 22, 29 | strfvi 17107 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘( I ‘𝐿)) |
| 31 | rlmsca2 21139 | . . . . . . 7 ⊢ ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿)) | |
| 32 | 31 | fveq2i 6831 | . . . . . 6 ⊢ (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
| 33 | 30, 32 | eqtri 2754 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
| 34 | 4, 33 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿)))) |
| 35 | 3, 6, 7, 13, 17, 21, 28, 34 | lsspropd 20957 | . . 3 ⊢ (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿))) |
| 36 | lidlval 21153 | . . 3 ⊢ (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)) | |
| 37 | lidlval 21153 | . . 3 ⊢ (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)) | |
| 38 | 35, 36, 37 | 3eqtr4g 2791 | . 2 ⊢ (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿)) |
| 39 | fvexd 6843 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐾) ∈ V) | |
| 40 | fvexd 6843 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐿) ∈ V) | |
| 41 | 3, 6, 7, 13, 17, 21, 28, 34, 39, 40 | lsppropd 20958 | . . 3 ⊢ (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿))) |
| 42 | rspval 21154 | . . 3 ⊢ (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)) | |
| 43 | rspval 21154 | . . 3 ⊢ (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)) | |
| 44 | 41, 42, 43 | 3eqtr4g 2791 | . 2 ⊢ (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿)) |
| 45 | 38, 44 | jca 511 | 1 ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 I cid 5513 ‘cfv 6487 (class class class)co 7352 ndxcnx 17110 Basecbs 17126 +gcplusg 17167 .rcmulr 17168 Scalarcsca 17170 ·𝑠 cvsca 17171 LSubSpclss 20870 LSpanclspn 20910 ringLModcrglmod 21112 LIdealclidl 21149 RSpancrsp 21150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-sca 17183 df-vsca 17184 df-ip 17185 df-lss 20871 df-lsp 20911 df-sra 21113 df-rgmod 21114 df-lidl 21151 df-rsp 21152 |
| This theorem is referenced by: crngridl 21223 |
| Copyright terms: Public domain | W3C validator |