MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlrsppropd Structured version   Visualization version   GIF version

Theorem lidlrsppropd 20414
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1 (𝜑𝐵 = (Base‘𝐾))
lidlpropd.2 (𝜑𝐵 = (Base‘𝐿))
lidlpropd.3 (𝜑𝐵𝑊)
lidlpropd.4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lidlpropd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
lidlpropd.6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
lidlrsppropd (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦

Proof of Theorem lidlrsppropd
StepHypRef Expression
1 lidlpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 rlmbas 20378 . . . . 5 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
31, 2eqtrdi 2795 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐾)))
4 lidlpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
5 rlmbas 20378 . . . . 5 (Base‘𝐿) = (Base‘(ringLMod‘𝐿))
64, 5eqtrdi 2795 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐿)))
7 lidlpropd.3 . . . 4 (𝜑𝐵𝑊)
8 lidlpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 rlmplusg 20379 . . . . . 6 (+g𝐾) = (+g‘(ringLMod‘𝐾))
109oveqi 7268 . . . . 5 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦)
11 rlmplusg 20379 . . . . . 6 (+g𝐿) = (+g‘(ringLMod‘𝐿))
1211oveqi 7268 . . . . 5 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)
138, 10, 123eqtr3g 2802 . . . 4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
14 rlmvsca 20385 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
1514oveqi 7268 . . . . 5 (𝑥(.r𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦)
16 lidlpropd.5 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
1715, 16eqeltrrid 2844 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊)
18 lidlpropd.6 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
19 rlmvsca 20385 . . . . . 6 (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿))
2019oveqi 7268 . . . . 5 (𝑥(.r𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)
2118, 15, 203eqtr3g 2802 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
22 baseid 16843 . . . . . . 7 Base = Slot (Base‘ndx)
23 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2422, 23strfvi 16819 . . . . . 6 (Base‘𝐾) = (Base‘( I ‘𝐾))
25 rlmsca2 20384 . . . . . . 7 ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾))
2625fveq2i 6759 . . . . . 6 (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾)))
2724, 26eqtri 2766 . . . . 5 (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾)))
281, 27eqtrdi 2795 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾))))
29 eqid 2738 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
3022, 29strfvi 16819 . . . . . 6 (Base‘𝐿) = (Base‘( I ‘𝐿))
31 rlmsca2 20384 . . . . . . 7 ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿))
3231fveq2i 6759 . . . . . 6 (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿)))
3330, 32eqtri 2766 . . . . 5 (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿)))
344, 33eqtrdi 2795 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿))))
353, 6, 7, 13, 17, 21, 28, 34lsspropd 20194 . . 3 (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿)))
36 lidlval 20375 . . 3 (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾))
37 lidlval 20375 . . 3 (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿))
3835, 36, 373eqtr4g 2804 . 2 (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿))
39 fvexd 6771 . . . 4 (𝜑 → (ringLMod‘𝐾) ∈ V)
40 fvexd 6771 . . . 4 (𝜑 → (ringLMod‘𝐿) ∈ V)
413, 6, 7, 13, 17, 21, 28, 34, 39, 40lsppropd 20195 . . 3 (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿)))
42 rspval 20376 . . 3 (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾))
43 rspval 20376 . . 3 (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿))
4441, 42, 433eqtr4g 2804 . 2 (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿))
4538, 44jca 511 1 (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   I cid 5479  cfv 6418  (class class class)co 7255  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  LSubSpclss 20108  LSpanclspn 20148  ringLModcrglmod 20346  LIdealclidl 20347  RSpancrsp 20348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-ip 16906  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352
This theorem is referenced by:  crngridl  20422
  Copyright terms: Public domain W3C validator