| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidlrsppropd | Structured version Visualization version GIF version | ||
| Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| lidlpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| lidlpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| lidlpropd.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| lidlpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lidlpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) |
| lidlpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| lidlrsppropd | ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | rlmbas 21156 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(ringLMod‘𝐾)) | |
| 3 | 1, 2 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐾))) |
| 4 | lidlpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 5 | rlmbas 21156 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(ringLMod‘𝐿)) | |
| 6 | 4, 5 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐿))) |
| 7 | lidlpropd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
| 8 | lidlpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 9 | rlmplusg 21157 | . . . . . 6 ⊢ (+g‘𝐾) = (+g‘(ringLMod‘𝐾)) | |
| 10 | 9 | oveqi 7423 | . . . . 5 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦) |
| 11 | rlmplusg 21157 | . . . . . 6 ⊢ (+g‘𝐿) = (+g‘(ringLMod‘𝐿)) | |
| 12 | 11 | oveqi 7423 | . . . . 5 ⊢ (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦) |
| 13 | 8, 10, 12 | 3eqtr3g 2794 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
| 14 | rlmvsca 21163 | . . . . . 6 ⊢ (.r‘𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)) | |
| 15 | 14 | oveqi 7423 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) |
| 16 | lidlpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) | |
| 17 | 15, 16 | eqeltrrid 2840 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊) |
| 18 | lidlpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 19 | rlmvsca 21163 | . . . . . 6 ⊢ (.r‘𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)) | |
| 20 | 19 | oveqi 7423 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦) |
| 21 | 18, 15, 20 | 3eqtr3g 2794 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)) |
| 22 | baseid 17236 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
| 23 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 24 | 22, 23 | strfvi 17214 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘( I ‘𝐾)) |
| 25 | rlmsca2 21162 | . . . . . . 7 ⊢ ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾)) | |
| 26 | 25 | fveq2i 6884 | . . . . . 6 ⊢ (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
| 27 | 24, 26 | eqtri 2759 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
| 28 | 1, 27 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾)))) |
| 29 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 30 | 22, 29 | strfvi 17214 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘( I ‘𝐿)) |
| 31 | rlmsca2 21162 | . . . . . . 7 ⊢ ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿)) | |
| 32 | 31 | fveq2i 6884 | . . . . . 6 ⊢ (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
| 33 | 30, 32 | eqtri 2759 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
| 34 | 4, 33 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿)))) |
| 35 | 3, 6, 7, 13, 17, 21, 28, 34 | lsspropd 20980 | . . 3 ⊢ (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿))) |
| 36 | lidlval 21176 | . . 3 ⊢ (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)) | |
| 37 | lidlval 21176 | . . 3 ⊢ (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)) | |
| 38 | 35, 36, 37 | 3eqtr4g 2796 | . 2 ⊢ (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿)) |
| 39 | fvexd 6896 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐾) ∈ V) | |
| 40 | fvexd 6896 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐿) ∈ V) | |
| 41 | 3, 6, 7, 13, 17, 21, 28, 34, 39, 40 | lsppropd 20981 | . . 3 ⊢ (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿))) |
| 42 | rspval 21177 | . . 3 ⊢ (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)) | |
| 43 | rspval 21177 | . . 3 ⊢ (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)) | |
| 44 | 41, 42, 43 | 3eqtr4g 2796 | . 2 ⊢ (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿)) |
| 45 | 38, 44 | jca 511 | 1 ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 I cid 5552 ‘cfv 6536 (class class class)co 7410 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 LSubSpclss 20893 LSpanclspn 20933 ringLModcrglmod 21135 LIdealclidl 21172 RSpancrsp 21173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-sca 17292 df-vsca 17293 df-ip 17294 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 |
| This theorem is referenced by: crngridl 21246 |
| Copyright terms: Public domain | W3C validator |