MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlrsppropd Structured version   Visualization version   GIF version

Theorem lidlrsppropd 21154
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1 (𝜑𝐵 = (Base‘𝐾))
lidlpropd.2 (𝜑𝐵 = (Base‘𝐿))
lidlpropd.3 (𝜑𝐵𝑊)
lidlpropd.4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lidlpropd.5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
lidlpropd.6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
lidlrsppropd (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦

Proof of Theorem lidlrsppropd
StepHypRef Expression
1 lidlpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 rlmbas 21100 . . . . 5 (Base‘𝐾) = (Base‘(ringLMod‘𝐾))
31, 2eqtrdi 2780 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐾)))
4 lidlpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
5 rlmbas 21100 . . . . 5 (Base‘𝐿) = (Base‘(ringLMod‘𝐿))
64, 5eqtrdi 2780 . . . 4 (𝜑𝐵 = (Base‘(ringLMod‘𝐿)))
7 lidlpropd.3 . . . 4 (𝜑𝐵𝑊)
8 lidlpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 rlmplusg 21101 . . . . . 6 (+g𝐾) = (+g‘(ringLMod‘𝐾))
109oveqi 7400 . . . . 5 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦)
11 rlmplusg 21101 . . . . . 6 (+g𝐿) = (+g‘(ringLMod‘𝐿))
1211oveqi 7400 . . . . 5 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)
138, 10, 123eqtr3g 2787 . . . 4 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦))
14 rlmvsca 21107 . . . . . 6 (.r𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾))
1514oveqi 7400 . . . . 5 (𝑥(.r𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦)
16 lidlpropd.5 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)
1715, 16eqeltrrid 2833 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊)
18 lidlpropd.6 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
19 rlmvsca 21107 . . . . . 6 (.r𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿))
2019oveqi 7400 . . . . 5 (𝑥(.r𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)
2118, 15, 203eqtr3g 2787 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦))
22 baseid 17182 . . . . . . 7 Base = Slot (Base‘ndx)
23 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2422, 23strfvi 17160 . . . . . 6 (Base‘𝐾) = (Base‘( I ‘𝐾))
25 rlmsca2 21106 . . . . . . 7 ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾))
2625fveq2i 6861 . . . . . 6 (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾)))
2724, 26eqtri 2752 . . . . 5 (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾)))
281, 27eqtrdi 2780 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾))))
29 eqid 2729 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
3022, 29strfvi 17160 . . . . . 6 (Base‘𝐿) = (Base‘( I ‘𝐿))
31 rlmsca2 21106 . . . . . . 7 ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿))
3231fveq2i 6861 . . . . . 6 (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿)))
3330, 32eqtri 2752 . . . . 5 (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿)))
344, 33eqtrdi 2780 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿))))
353, 6, 7, 13, 17, 21, 28, 34lsspropd 20924 . . 3 (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿)))
36 lidlval 21120 . . 3 (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾))
37 lidlval 21120 . . 3 (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿))
3835, 36, 373eqtr4g 2789 . 2 (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿))
39 fvexd 6873 . . . 4 (𝜑 → (ringLMod‘𝐾) ∈ V)
40 fvexd 6873 . . . 4 (𝜑 → (ringLMod‘𝐿) ∈ V)
413, 6, 7, 13, 17, 21, 28, 34, 39, 40lsppropd 20925 . . 3 (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿)))
42 rspval 21121 . . 3 (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾))
43 rspval 21121 . . 3 (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿))
4441, 42, 433eqtr4g 2789 . 2 (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿))
4538, 44jca 511 1 (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   I cid 5532  cfv 6511  (class class class)co 7387  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  LSubSpclss 20837  LSpanclspn 20877  ringLModcrglmod 21079  LIdealclidl 21116  RSpancrsp 21117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-sca 17236  df-vsca 17237  df-ip 17238  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119
This theorem is referenced by:  crngridl  21190
  Copyright terms: Public domain W3C validator