![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidlrsppropd | Structured version Visualization version GIF version |
Description: The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
lidlpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lidlpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lidlpropd.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
lidlpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lidlpropd.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) |
lidlpropd.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
lidlrsppropd | ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlpropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | rlmbas 20817 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(ringLMod‘𝐾)) | |
3 | 1, 2 | eqtrdi 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐾))) |
4 | lidlpropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
5 | rlmbas 20817 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(ringLMod‘𝐿)) | |
6 | 4, 5 | eqtrdi 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(ringLMod‘𝐿))) |
7 | lidlpropd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
8 | lidlpropd.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
9 | rlmplusg 20818 | . . . . . 6 ⊢ (+g‘𝐾) = (+g‘(ringLMod‘𝐾)) | |
10 | 9 | oveqi 7422 | . . . . 5 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘(ringLMod‘𝐾))𝑦) |
11 | rlmplusg 20818 | . . . . . 6 ⊢ (+g‘𝐿) = (+g‘(ringLMod‘𝐿)) | |
12 | 11 | oveqi 7422 | . . . . 5 ⊢ (𝑥(+g‘𝐿)𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦) |
13 | 8, 10, 12 | 3eqtr3g 2796 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘(ringLMod‘𝐾))𝑦) = (𝑥(+g‘(ringLMod‘𝐿))𝑦)) |
14 | rlmvsca 20824 | . . . . . 6 ⊢ (.r‘𝐾) = ( ·𝑠 ‘(ringLMod‘𝐾)) | |
15 | 14 | oveqi 7422 | . . . . 5 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) |
16 | lidlpropd.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊) | |
17 | 15, 16 | eqeltrrid 2839 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) ∈ 𝑊) |
18 | lidlpropd.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
19 | rlmvsca 20824 | . . . . . 6 ⊢ (.r‘𝐿) = ( ·𝑠 ‘(ringLMod‘𝐿)) | |
20 | 19 | oveqi 7422 | . . . . 5 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦) |
21 | 18, 15, 20 | 3eqtr3g 2796 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘(ringLMod‘𝐾))𝑦) = (𝑥( ·𝑠 ‘(ringLMod‘𝐿))𝑦)) |
22 | baseid 17147 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
23 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
24 | 22, 23 | strfvi 17123 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘( I ‘𝐾)) |
25 | rlmsca2 20823 | . . . . . . 7 ⊢ ( I ‘𝐾) = (Scalar‘(ringLMod‘𝐾)) | |
26 | 25 | fveq2i 6895 | . . . . . 6 ⊢ (Base‘( I ‘𝐾)) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
27 | 24, 26 | eqtri 2761 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘(Scalar‘(ringLMod‘𝐾))) |
28 | 1, 27 | eqtrdi 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐾)))) |
29 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
30 | 22, 29 | strfvi 17123 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘( I ‘𝐿)) |
31 | rlmsca2 20823 | . . . . . . 7 ⊢ ( I ‘𝐿) = (Scalar‘(ringLMod‘𝐿)) | |
32 | 31 | fveq2i 6895 | . . . . . 6 ⊢ (Base‘( I ‘𝐿)) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
33 | 30, 32 | eqtri 2761 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘(Scalar‘(ringLMod‘𝐿))) |
34 | 4, 33 | eqtrdi 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝐿)))) |
35 | 3, 6, 7, 13, 17, 21, 28, 34 | lsspropd 20628 | . . 3 ⊢ (𝜑 → (LSubSp‘(ringLMod‘𝐾)) = (LSubSp‘(ringLMod‘𝐿))) |
36 | lidlval 20814 | . . 3 ⊢ (LIdeal‘𝐾) = (LSubSp‘(ringLMod‘𝐾)) | |
37 | lidlval 20814 | . . 3 ⊢ (LIdeal‘𝐿) = (LSubSp‘(ringLMod‘𝐿)) | |
38 | 35, 36, 37 | 3eqtr4g 2798 | . 2 ⊢ (𝜑 → (LIdeal‘𝐾) = (LIdeal‘𝐿)) |
39 | fvexd 6907 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐾) ∈ V) | |
40 | fvexd 6907 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝐿) ∈ V) | |
41 | 3, 6, 7, 13, 17, 21, 28, 34, 39, 40 | lsppropd 20629 | . . 3 ⊢ (𝜑 → (LSpan‘(ringLMod‘𝐾)) = (LSpan‘(ringLMod‘𝐿))) |
42 | rspval 20815 | . . 3 ⊢ (RSpan‘𝐾) = (LSpan‘(ringLMod‘𝐾)) | |
43 | rspval 20815 | . . 3 ⊢ (RSpan‘𝐿) = (LSpan‘(ringLMod‘𝐿)) | |
44 | 41, 42, 43 | 3eqtr4g 2798 | . 2 ⊢ (𝜑 → (RSpan‘𝐾) = (RSpan‘𝐿)) |
45 | 38, 44 | jca 513 | 1 ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 I cid 5574 ‘cfv 6544 (class class class)co 7409 ndxcnx 17126 Basecbs 17144 +gcplusg 17197 .rcmulr 17198 Scalarcsca 17200 ·𝑠 cvsca 17201 LSubSpclss 20542 LSpanclspn 20582 ringLModcrglmod 20782 LIdealclidl 20783 RSpancrsp 20784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-sca 17213 df-vsca 17214 df-ip 17215 df-lss 20543 df-lsp 20583 df-sra 20785 df-rgmod 20786 df-lidl 20787 df-rsp 20788 |
This theorem is referenced by: crngridl 20876 |
Copyright terms: Public domain | W3C validator |