| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1scltm | Structured version Visualization version GIF version | ||
| Description: A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1scltm.k | ⊢ 𝐾 = (Base‘𝑅) |
| ply1scltm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1scltm.x | ⊢ 𝑋 = (var1‘𝑅) |
| ply1scltm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
| ply1scltm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
| ply1scltm.e | ⊢ ↑ = (.g‘𝑁) |
| ply1scltm.a | ⊢ 𝐴 = (algSc‘𝑃) |
| Ref | Expression |
|---|---|
| ply1scltm | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (0 ↑ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scltm.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
| 2 | ply1scltm.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1sca2 22203 | . . . 4 ⊢ ( I ‘𝑅) = (Scalar‘𝑃) |
| 4 | baseid 17232 | . . . . 5 ⊢ Base = Slot (Base‘ndx) | |
| 5 | ply1scltm.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 6 | 4, 5 | strfvi 17209 | . . . 4 ⊢ 𝐾 = (Base‘( I ‘𝑅)) |
| 7 | ply1scltm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 8 | eqid 2734 | . . . 4 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 9 | 1, 3, 6, 7, 8 | asclval 21854 | . . 3 ⊢ (𝐹 ∈ 𝐾 → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
| 11 | ply1scltm.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
| 12 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 13 | 11, 2, 12 | vr1cl 22167 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 14 | ply1scltm.n | . . . . . . 7 ⊢ 𝑁 = (mulGrp‘𝑃) | |
| 15 | 14, 12 | mgpbas 20110 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑁) |
| 16 | 14, 8 | ringidval 20148 | . . . . . 6 ⊢ (1r‘𝑃) = (0g‘𝑁) |
| 17 | ply1scltm.e | . . . . . 6 ⊢ ↑ = (.g‘𝑁) | |
| 18 | 15, 16, 17 | mulg0 19061 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (1r‘𝑃)) |
| 19 | 13, 18 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → (0 ↑ 𝑋) = (1r‘𝑃)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (0 ↑ 𝑋) = (1r‘𝑃)) |
| 21 | 20 | oveq2d 7429 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐹 · (0 ↑ 𝑋)) = (𝐹 · (1r‘𝑃))) |
| 22 | 10, 21 | eqtr4d 2772 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (0 ↑ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 I cid 5557 ‘cfv 6541 (class class class)co 7413 0cc0 11137 ndxcnx 17212 Basecbs 17229 ·𝑠 cvsca 17277 .gcmg 19054 mulGrpcmgp 20105 1rcur 20146 Ringcrg 20198 algSccascl 21826 var1cv1 22125 Poly1cpl1 22126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-seq 14025 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-tset 17292 df-ple 17293 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-mulg 19055 df-mgp 20106 df-ur 20147 df-ring 20200 df-ascl 21829 df-psr 21883 df-mvr 21884 df-mpl 21885 df-opsr 21887 df-psr1 22129 df-vr1 22130 df-ply1 22131 |
| This theorem is referenced by: coe1sclmul 22233 coe1sclmul2 22235 coe1scl 22238 ply1idvr1OLD 22247 pmatcollpwscmatlem2 22744 |
| Copyright terms: Public domain | W3C validator |