MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1scltm Structured version   Visualization version   GIF version

Theorem ply1scltm 22205
Description: A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
ply1scltm.k 𝐾 = (Base‘𝑅)
ply1scltm.p 𝑃 = (Poly1𝑅)
ply1scltm.x 𝑋 = (var1𝑅)
ply1scltm.m · = ( ·𝑠𝑃)
ply1scltm.n 𝑁 = (mulGrp‘𝑃)
ply1scltm.e = (.g𝑁)
ply1scltm.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
ply1scltm ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐴𝐹) = (𝐹 · (0 𝑋)))

Proof of Theorem ply1scltm
StepHypRef Expression
1 ply1scltm.a . . . 4 𝐴 = (algSc‘𝑃)
2 ply1scltm.p . . . . 5 𝑃 = (Poly1𝑅)
32ply1sca2 22177 . . . 4 ( I ‘𝑅) = (Scalar‘𝑃)
4 baseid 17188 . . . . 5 Base = Slot (Base‘ndx)
5 ply1scltm.k . . . . 5 𝐾 = (Base‘𝑅)
64, 5strfvi 17164 . . . 4 𝐾 = (Base‘( I ‘𝑅))
7 ply1scltm.m . . . 4 · = ( ·𝑠𝑃)
8 eqid 2727 . . . 4 (1r𝑃) = (1r𝑃)
91, 3, 6, 7, 8asclval 21818 . . 3 (𝐹𝐾 → (𝐴𝐹) = (𝐹 · (1r𝑃)))
109adantl 480 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐴𝐹) = (𝐹 · (1r𝑃)))
11 ply1scltm.x . . . . . 6 𝑋 = (var1𝑅)
12 eqid 2727 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
1311, 2, 12vr1cl 22141 . . . . 5 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
14 ply1scltm.n . . . . . . 7 𝑁 = (mulGrp‘𝑃)
1514, 12mgpbas 20085 . . . . . 6 (Base‘𝑃) = (Base‘𝑁)
1614, 8ringidval 20128 . . . . . 6 (1r𝑃) = (0g𝑁)
17 ply1scltm.e . . . . . 6 = (.g𝑁)
1815, 16, 17mulg0 19035 . . . . 5 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (1r𝑃))
1913, 18syl 17 . . . 4 (𝑅 ∈ Ring → (0 𝑋) = (1r𝑃))
2019adantr 479 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (0 𝑋) = (1r𝑃))
2120oveq2d 7440 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹 · (0 𝑋)) = (𝐹 · (1r𝑃)))
2210, 21eqtr4d 2770 1 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐴𝐹) = (𝐹 · (0 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098   I cid 5577  cfv 6551  (class class class)co 7424  0cc0 11144  ndxcnx 17167  Basecbs 17185   ·𝑠 cvsca 17242  .gcmg 19028  mulGrpcmgp 20079  1rcur 20126  Ringcrg 20178  algSccascl 21791  var1cv1 22100  Poly1cpl1 22101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-supp 8170  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9392  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-seq 14005  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-sca 17254  df-vsca 17255  df-tset 17257  df-ple 17258  df-0g 17428  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-mulg 19029  df-mgp 20080  df-ur 20127  df-ring 20180  df-ascl 21794  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-psr1 22104  df-vr1 22105  df-ply1 22106
This theorem is referenced by:  coe1sclmul  22206  coe1sclmul2  22208  coe1scl  22211  ply1idvr1  22219  pmatcollpwscmatlem2  22710
  Copyright terms: Public domain W3C validator