Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-endbase | Structured version Visualization version GIF version |
Description: Base set of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) |
Ref | Expression |
---|---|
bj-endval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
bj-endval.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
Ref | Expression |
---|---|
bj-endbase | ⊢ (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-endval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | bj-endval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
3 | 1, 2 | bj-endval 35010 | . . 3 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) = {〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}) |
4 | 3 | fveq1d 6661 | . 2 ⊢ (𝜑 → (((End ‘𝐶)‘𝑋)‘(Base‘ndx)) = ({〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}‘(Base‘ndx))) |
5 | fvexd 6674 | . . 3 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ V) | |
6 | df-base 16548 | . . 3 ⊢ Base = Slot 1 | |
7 | 1nn 11686 | . . 3 ⊢ 1 ∈ ℕ | |
8 | 5, 6, 7 | strndxid 16569 | . 2 ⊢ (𝜑 → (((End ‘𝐶)‘𝑋)‘(Base‘ndx)) = (Base‘((End ‘𝐶)‘𝑋))) |
9 | basendxnplusgndx 16667 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
10 | fvex 6672 | . . . 4 ⊢ (Base‘ndx) ∈ V | |
11 | ovex 7184 | . . . 4 ⊢ (𝑋(Hom ‘𝐶)𝑋) ∈ V | |
12 | 10, 11 | fvpr1 6944 | . . 3 ⊢ ((Base‘ndx) ≠ (+g‘ndx) → ({〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}‘(Base‘ndx)) = (𝑋(Hom ‘𝐶)𝑋)) |
13 | 9, 12 | mp1i 13 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}‘(Base‘ndx)) = (𝑋(Hom ‘𝐶)𝑋)) |
14 | 4, 8, 13 | 3eqtr3d 2802 | 1 ⊢ (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 Vcvv 3410 {cpr 4525 〈cop 4529 ‘cfv 6336 (class class class)co 7151 1c1 10577 ndxcnx 16539 Basecbs 16542 +gcplusg 16624 Hom chom 16635 compcco 16636 Catccat 16994 End cend 35008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-ndx 16545 df-slot 16546 df-base 16548 df-plusg 16637 df-bj-end 35009 |
This theorem is referenced by: bj-endmnd 35013 |
Copyright terms: Public domain | W3C validator |