![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-endbase | Structured version Visualization version GIF version |
Description: Base set of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-endval.c | β’ (π β πΆ β Cat) |
bj-endval.x | β’ (π β π β (BaseβπΆ)) |
Ref | Expression |
---|---|
bj-endbase | β’ (π β (Baseβ((End βπΆ)βπ)) = (π(Hom βπΆ)π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17152 | . . 3 β’ Base = Slot (Baseβndx) | |
2 | fvexd 6907 | . . 3 β’ (π β ((End βπΆ)βπ) β V) | |
3 | 1, 2 | strfvnd 17123 | . 2 β’ (π β (Baseβ((End βπΆ)βπ)) = (((End βπΆ)βπ)β(Baseβndx))) |
4 | bj-endval.c | . . . 4 β’ (π β πΆ β Cat) | |
5 | bj-endval.x | . . . 4 β’ (π β π β (BaseβπΆ)) | |
6 | 4, 5 | bj-endval 36500 | . . 3 β’ (π β ((End βπΆ)βπ) = {β¨(Baseβndx), (π(Hom βπΆ)π)β©, β¨(+gβndx), (β¨π, πβ©(compβπΆ)π)β©}) |
7 | 6 | fveq1d 6894 | . 2 β’ (π β (((End βπΆ)βπ)β(Baseβndx)) = ({β¨(Baseβndx), (π(Hom βπΆ)π)β©, β¨(+gβndx), (β¨π, πβ©(compβπΆ)π)β©}β(Baseβndx))) |
8 | basendxnplusgndx 17232 | . . 3 β’ (Baseβndx) β (+gβndx) | |
9 | fvex 6905 | . . . 4 β’ (Baseβndx) β V | |
10 | ovex 7445 | . . . 4 β’ (π(Hom βπΆ)π) β V | |
11 | 9, 10 | fvpr1 7194 | . . 3 β’ ((Baseβndx) β (+gβndx) β ({β¨(Baseβndx), (π(Hom βπΆ)π)β©, β¨(+gβndx), (β¨π, πβ©(compβπΆ)π)β©}β(Baseβndx)) = (π(Hom βπΆ)π)) |
12 | 8, 11 | mp1i 13 | . 2 β’ (π β ({β¨(Baseβndx), (π(Hom βπΆ)π)β©, β¨(+gβndx), (β¨π, πβ©(compβπΆ)π)β©}β(Baseβndx)) = (π(Hom βπΆ)π)) |
13 | 3, 7, 12 | 3eqtrd 2775 | 1 β’ (π β (Baseβ((End βπΆ)βπ)) = (π(Hom βπΆ)π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 Vcvv 3473 {cpr 4631 β¨cop 4635 βcfv 6544 (class class class)co 7412 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 Hom chom 17213 compcco 17214 Catccat 17613 End cend 36498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-bj-end 36499 |
This theorem is referenced by: bj-endmnd 36503 |
Copyright terms: Public domain | W3C validator |