![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-endcomp | Structured version Visualization version GIF version |
Description: Composition law of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-endval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
bj-endval.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
Ref | Expression |
---|---|
bj-endcomp | ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusgid 17231 | . . 3 ⊢ +g = Slot (+g‘ndx) | |
2 | fvexd 6906 | . . 3 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ V) | |
3 | 1, 2 | strfvnd 17125 | . 2 ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (((End ‘𝐶)‘𝑋)‘(+g‘ndx))) |
4 | bj-endval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | bj-endval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
6 | 4, 5 | bj-endval 36662 | . . 3 ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) = {〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}) |
7 | 6 | fveq1d 6893 | . 2 ⊢ (𝜑 → (((End ‘𝐶)‘𝑋)‘(+g‘ndx)) = ({〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}‘(+g‘ndx))) |
8 | basendxnplusgndx 17234 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
9 | fvex 6904 | . . . 4 ⊢ (+g‘ndx) ∈ V | |
10 | ovex 7445 | . . . 4 ⊢ (〈𝑋, 𝑋〉(comp‘𝐶)𝑋) ∈ V | |
11 | 9, 10 | fvpr2 7195 | . . 3 ⊢ ((Base‘ndx) ≠ (+g‘ndx) → ({〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}‘(+g‘ndx)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) |
12 | 8, 11 | mp1i 13 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}‘(+g‘ndx)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) |
13 | 3, 7, 12 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 {cpr 4630 〈cop 4634 ‘cfv 6543 (class class class)co 7412 ndxcnx 17133 Basecbs 17151 +gcplusg 17204 Hom chom 17215 compcco 17216 Catccat 17615 End cend 36660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-bj-end 36661 |
This theorem is referenced by: bj-endmnd 36665 |
Copyright terms: Public domain | W3C validator |