Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppiniseg Structured version   Visualization version   GIF version

Theorem suppiniseg 32698
Description: Relation between the support (𝐹 supp 𝑍) and the initial segment (𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
suppiniseg ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))

Proof of Theorem suppiniseg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3986 . . . 4 (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
2 funfn 6608 . . . . . . . . . . 11 (Fun 𝐹𝐹 Fn dom 𝐹)
32biimpi 216 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
4 elsuppfng 8210 . . . . . . . . . 10 ((𝐹 Fn dom 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
53, 4syl3an1 1163 . . . . . . . . 9 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
65baibd 539 . . . . . . . 8 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ≠ 𝑍))
76notbid 318 . . . . . . 7 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ≠ 𝑍))
8 nne 2950 . . . . . . 7 (¬ (𝐹𝑥) ≠ 𝑍 ↔ (𝐹𝑥) = 𝑍)
97, 8bitrdi 287 . . . . . 6 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) = 𝑍))
10 fvex 6933 . . . . . . 7 (𝐹𝑥) ∈ V
1110elsn 4663 . . . . . 6 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
129, 11bitr4di 289 . . . . 5 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ {𝑍}))
1312pm5.32da 578 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
141, 13bitrid 283 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1533ad2ant1 1133 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 Fn dom 𝐹)
16 elpreima 7091 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1715, 16syl 17 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1814, 17bitr4d 282 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ 𝑥 ∈ (𝐹 “ {𝑍})))
1918eqrdv 2738 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  fressupp  32700  supppreima  32703
  Copyright terms: Public domain W3C validator