Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppiniseg Structured version   Visualization version   GIF version

Theorem suppiniseg 30922
Description: Relation between the support (𝐹 supp 𝑍) and the initial segment (𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
suppiniseg ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))

Proof of Theorem suppiniseg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3893 . . . 4 (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
2 funfn 6448 . . . . . . . . . . 11 (Fun 𝐹𝐹 Fn dom 𝐹)
32biimpi 215 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
4 elsuppfng 7957 . . . . . . . . . 10 ((𝐹 Fn dom 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
53, 4syl3an1 1161 . . . . . . . . 9 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
65baibd 539 . . . . . . . 8 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ≠ 𝑍))
76notbid 317 . . . . . . 7 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ≠ 𝑍))
8 nne 2946 . . . . . . 7 (¬ (𝐹𝑥) ≠ 𝑍 ↔ (𝐹𝑥) = 𝑍)
97, 8bitrdi 286 . . . . . 6 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) = 𝑍))
10 fvex 6769 . . . . . . 7 (𝐹𝑥) ∈ V
1110elsn 4573 . . . . . 6 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
129, 11bitr4di 288 . . . . 5 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ {𝑍}))
1312pm5.32da 578 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
141, 13syl5bb 282 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1533ad2ant1 1131 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 Fn dom 𝐹)
16 elpreima 6917 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1715, 16syl 17 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1814, 17bitr4d 281 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ 𝑥 ∈ (𝐹 “ {𝑍})))
1918eqrdv 2736 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  ccnv 5579  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255   supp csupp 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-supp 7949
This theorem is referenced by:  fressupp  30924  supppreima  30927
  Copyright terms: Public domain W3C validator