| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppiniseg | Structured version Visualization version GIF version | ||
| Description: Relation between the support (𝐹 supp 𝑍) and the initial segment (◡𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.) |
| Ref | Expression |
|---|---|
| suppiniseg | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3961 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍))) | |
| 2 | funfn 6596 | . . . . . . . . . . 11 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 3 | 2 | biimpi 216 | . . . . . . . . . 10 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
| 4 | elsuppfng 8194 | . . . . . . . . . 10 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
| 5 | 3, 4 | syl3an1 1164 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
| 6 | 5 | baibd 539 | . . . . . . . 8 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑥) ≠ 𝑍)) |
| 7 | 6 | notbid 318 | . . . . . . 7 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹‘𝑥) ≠ 𝑍)) |
| 8 | nne 2944 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑍 ↔ (𝐹‘𝑥) = 𝑍) | |
| 9 | 7, 8 | bitrdi 287 | . . . . . 6 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑥) = 𝑍)) |
| 10 | fvex 6919 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
| 11 | 10 | elsn 4641 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ {𝑍} ↔ (𝐹‘𝑥) = 𝑍) |
| 12 | 9, 11 | bitr4di 289 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑥) ∈ {𝑍})) |
| 13 | 12 | pm5.32da 579 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) |
| 14 | 1, 13 | bitrid 283 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) |
| 15 | 3 | 3ad2ant1 1134 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
| 16 | elpreima 7078 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (◡𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) |
| 18 | 14, 17 | bitr4d 282 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ 𝑥 ∈ (◡𝐹 “ {𝑍}))) |
| 19 | 18 | eqrdv 2735 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 {csn 4626 ◡ccnv 5684 dom cdm 5685 “ cima 5688 Fun wfun 6555 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 supp csupp 8185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8186 |
| This theorem is referenced by: fressupp 32697 supppreima 32700 |
| Copyright terms: Public domain | W3C validator |