![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suppiniseg | Structured version Visualization version GIF version |
Description: Relation between the support (𝐹 supp 𝑍) and the initial segment (◡𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.) |
Ref | Expression |
---|---|
suppiniseg | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍))) | |
2 | funfn 6608 | . . . . . . . . . . 11 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
3 | 2 | biimpi 216 | . . . . . . . . . 10 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
4 | elsuppfng 8210 | . . . . . . . . . 10 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 𝑍))) | |
5 | 3, 4 | syl3an1 1163 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
6 | 5 | baibd 539 | . . . . . . . 8 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑥) ≠ 𝑍)) |
7 | 6 | notbid 318 | . . . . . . 7 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹‘𝑥) ≠ 𝑍)) |
8 | nne 2950 | . . . . . . 7 ⊢ (¬ (𝐹‘𝑥) ≠ 𝑍 ↔ (𝐹‘𝑥) = 𝑍) | |
9 | 7, 8 | bitrdi 287 | . . . . . 6 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑥) = 𝑍)) |
10 | fvex 6933 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
11 | 10 | elsn 4663 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ {𝑍} ↔ (𝐹‘𝑥) = 𝑍) |
12 | 9, 11 | bitr4di 289 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑥) ∈ {𝑍})) |
13 | 12 | pm5.32da 578 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) |
14 | 1, 13 | bitrid 283 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) |
15 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
16 | elpreima 7091 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (◡𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ {𝑍}))) |
18 | 14, 17 | bitr4d 282 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ 𝑥 ∈ (◡𝐹 “ {𝑍}))) |
19 | 18 | eqrdv 2738 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: fressupp 32700 supppreima 32703 |
Copyright terms: Public domain | W3C validator |