Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppiniseg Structured version   Visualization version   GIF version

Theorem suppiniseg 30712
Description: Relation between the support (𝐹 supp 𝑍) and the initial segment (𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
suppiniseg ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))

Proof of Theorem suppiniseg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3867 . . . 4 (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
2 funfn 6399 . . . . . . . . . . 11 (Fun 𝐹𝐹 Fn dom 𝐹)
32biimpi 219 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
4 elsuppfng 7901 . . . . . . . . . 10 ((𝐹 Fn dom 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
53, 4syl3an1 1165 . . . . . . . . 9 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
65baibd 543 . . . . . . . 8 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ≠ 𝑍))
76notbid 321 . . . . . . 7 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ≠ 𝑍))
8 nne 2939 . . . . . . 7 (¬ (𝐹𝑥) ≠ 𝑍 ↔ (𝐹𝑥) = 𝑍)
97, 8bitrdi 290 . . . . . 6 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) = 𝑍))
10 fvex 6719 . . . . . . 7 (𝐹𝑥) ∈ V
1110elsn 4546 . . . . . 6 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
129, 11bitr4di 292 . . . . 5 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ {𝑍}))
1312pm5.32da 582 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
141, 13syl5bb 286 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1533ad2ant1 1135 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 Fn dom 𝐹)
16 elpreima 6867 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1715, 16syl 17 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1814, 17bitr4d 285 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ 𝑥 ∈ (𝐹 “ {𝑍})))
1918eqrdv 2732 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  cdif 3854  {csn 4531  ccnv 5539  dom cdm 5540  cima 5543  Fun wfun 6363   Fn wfn 6364  cfv 6369  (class class class)co 7202   supp csupp 7892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-supp 7893
This theorem is referenced by:  fressupp  30714  supppreima  30717
  Copyright terms: Public domain W3C validator