Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppiniseg Structured version   Visualization version   GIF version

Theorem suppiniseg 32667
Description: Relation between the support (𝐹 supp 𝑍) and the initial segment (𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.)
Assertion
Ref Expression
suppiniseg ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))

Proof of Theorem suppiniseg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3907 . . . 4 (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
2 funfn 6511 . . . . . . . . . . 11 (Fun 𝐹𝐹 Fn dom 𝐹)
32biimpi 216 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
4 elsuppfng 8099 . . . . . . . . . 10 ((𝐹 Fn dom 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
53, 4syl3an1 1163 . . . . . . . . 9 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ≠ 𝑍)))
65baibd 539 . . . . . . . 8 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ≠ 𝑍))
76notbid 318 . . . . . . 7 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ≠ 𝑍))
8 nne 2932 . . . . . . 7 (¬ (𝐹𝑥) ≠ 𝑍 ↔ (𝐹𝑥) = 𝑍)
97, 8bitrdi 287 . . . . . 6 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) = 𝑍))
10 fvex 6835 . . . . . . 7 (𝐹𝑥) ∈ V
1110elsn 4588 . . . . . 6 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
129, 11bitr4di 289 . . . . 5 (((Fun 𝐹𝐹𝑉𝑍𝑊) ∧ 𝑥 ∈ dom 𝐹) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ {𝑍}))
1312pm5.32da 579 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → ((𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
141, 13bitrid 283 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1533ad2ant1 1133 . . . 4 ((Fun 𝐹𝐹𝑉𝑍𝑊) → 𝐹 Fn dom 𝐹)
16 elpreima 6991 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1715, 16syl 17 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ {𝑍})))
1814, 17bitr4d 282 . 2 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)) ↔ 𝑥 ∈ (𝐹 “ {𝑍})))
1918eqrdv 2729 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4573  ccnv 5613  dom cdm 5614  cima 5617  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346   supp csupp 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-supp 8091
This theorem is referenced by:  fressupp  32669  supppreima  32672
  Copyright terms: Public domain W3C validator