| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssrg | Structured version Visualization version GIF version | ||
| Description: A function is zero outside its support. Version of suppssr 8151 avoiding ax-rep 5229 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
| Ref | Expression |
|---|---|
| suppssrg.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppssrg.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| suppssrg.a | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| suppssrg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssrg | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3921 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
| 2 | suppssrg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | ffnd 6671 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | suppssrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 5 | suppssrg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 6 | elsuppfng 8125 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 8 | suppssrg.n | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 9 | 8 | sseld 3942 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
| 10 | 7, 9 | sylbird 260 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) → 𝑋 ∈ 𝑊)) |
| 11 | 10 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
| 12 | 11 | necon1bd 2943 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
| 13 | 12 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| 14 | 1, 13 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ⊆ wss 3911 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-supp 8117 |
| This theorem is referenced by: psrbaglesupp 21864 psrbaglefi 21868 mhpmulcl 22069 mhpvscacl 22074 evlsvvvallem2 42543 selvvvval 42566 |
| Copyright terms: Public domain | W3C validator |