MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssrg Structured version   Visualization version   GIF version

Theorem suppssrg 8237
Description: A function is zero outside its support. Version of suppssr 8236 avoiding ax-rep 5303 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
suppssrg.f (𝜑𝐹:𝐴𝐵)
suppssrg.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssrg.a (𝜑𝐹𝑉)
suppssrg.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssrg ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssrg
StepHypRef Expression
1 eldif 3986 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 suppssrg.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
32ffnd 6748 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 suppssrg.a . . . . . . 7 (𝜑𝐹𝑉)
5 suppssrg.z . . . . . . 7 (𝜑𝑍𝑈)
6 elsuppfng 8210 . . . . . . 7 ((𝐹 Fn 𝐴𝐹𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
73, 4, 5, 6syl3anc 1371 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
8 suppssrg.n . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
98sseld 4007 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
107, 9sylbird 260 . . . . 5 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) → 𝑋𝑊))
1110expdimp 452 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
1211necon1bd 2964 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
1312impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
141, 13sylan2b 593 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  psrbaglesupp  21965  psrbaglefi  21969  mhpmulcl  22176  mhpvscacl  22181  evlsvvvallem2  42517  selvvvval  42540
  Copyright terms: Public domain W3C validator