MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssrg Structured version   Visualization version   GIF version

Theorem suppssrg 8176
Description: A function is zero outside its support. Version of suppssr 8175 avoiding ax-rep 5275 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
suppssrg.f (𝜑𝐹:𝐴𝐵)
suppssrg.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssrg.a (𝜑𝐹𝑉)
suppssrg.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssrg ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssrg
StepHypRef Expression
1 eldif 3950 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 suppssrg.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
32ffnd 6708 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 suppssrg.a . . . . . . 7 (𝜑𝐹𝑉)
5 suppssrg.z . . . . . . 7 (𝜑𝑍𝑈)
6 elsuppfng 8149 . . . . . . 7 ((𝐹 Fn 𝐴𝐹𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
73, 4, 5, 6syl3anc 1368 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
8 suppssrg.n . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
98sseld 3973 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
107, 9sylbird 260 . . . . 5 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) → 𝑋𝑊))
1110expdimp 452 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
1211necon1bd 2950 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
1312impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
141, 13sylan2b 593 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  cdif 3937  wss 3940   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401   supp csupp 8140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-supp 8141
This theorem is referenced by:  psrbaglesupp  21777  psrbaglefi  21785  evlsvvvallem2  41589  selvvvval  41612
  Copyright terms: Public domain W3C validator