| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssrg | Structured version Visualization version GIF version | ||
| Description: A function is zero outside its support. Version of suppssr 8125 avoiding ax-rep 5215 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
| Ref | Expression |
|---|---|
| suppssrg.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppssrg.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| suppssrg.a | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| suppssrg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssrg | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3907 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
| 2 | suppssrg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | ffnd 6652 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | suppssrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 5 | suppssrg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 6 | elsuppfng 8099 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 8 | suppssrg.n | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 9 | 8 | sseld 3928 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
| 10 | 7, 9 | sylbird 260 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) → 𝑋 ∈ 𝑊)) |
| 11 | 10 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
| 12 | 11 | necon1bd 2946 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
| 13 | 12 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| 14 | 1, 13 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ⊆ wss 3897 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-supp 8091 |
| This theorem is referenced by: psrbaglesupp 21859 psrbaglefi 21863 mhpmulcl 22064 mhpvscacl 22069 evlsvvvallem2 42665 selvvvval 42688 |
| Copyright terms: Public domain | W3C validator |