![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssrg | Structured version Visualization version GIF version |
Description: A function is zero outside its support. Version of suppssr 8175 avoiding ax-rep 5275 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
Ref | Expression |
---|---|
suppssrg.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
suppssrg.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
suppssrg.a | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
suppssrg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
Ref | Expression |
---|---|
suppssrg | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3950 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
2 | suppssrg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | ffnd 6708 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | suppssrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
5 | suppssrg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
6 | elsuppfng 8149 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
7 | 3, 4, 5, 6 | syl3anc 1368 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
8 | suppssrg.n | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
9 | 8 | sseld 3973 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
10 | 7, 9 | sylbird 260 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) → 𝑋 ∈ 𝑊)) |
11 | 10 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
12 | 11 | necon1bd 2950 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
13 | 12 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
14 | 1, 13 | sylan2b 593 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∖ cdif 3937 ⊆ wss 3940 Fn wfn 6528 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 supp csupp 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-supp 8141 |
This theorem is referenced by: psrbaglesupp 21777 psrbaglefi 21785 evlsvvvallem2 41589 selvvvval 41612 |
Copyright terms: Public domain | W3C validator |