MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssrg Structured version   Visualization version   GIF version

Theorem suppssrg 8178
Description: A function is zero outside its support. Version of suppssr 8177 avoiding ax-rep 5237 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
suppssrg.f (𝜑𝐹:𝐴𝐵)
suppssrg.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssrg.a (𝜑𝐹𝑉)
suppssrg.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssrg ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssrg
StepHypRef Expression
1 eldif 3927 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 suppssrg.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
32ffnd 6692 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 suppssrg.a . . . . . . 7 (𝜑𝐹𝑉)
5 suppssrg.z . . . . . . 7 (𝜑𝑍𝑈)
6 elsuppfng 8151 . . . . . . 7 ((𝐹 Fn 𝐴𝐹𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
73, 4, 5, 6syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
8 suppssrg.n . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
98sseld 3948 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
107, 9sylbird 260 . . . . 5 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) → 𝑋𝑊))
1110expdimp 452 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
1211necon1bd 2944 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
1312impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
141, 13sylan2b 594 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by:  psrbaglesupp  21838  psrbaglefi  21842  mhpmulcl  22043  mhpvscacl  22048  evlsvvvallem2  42557  selvvvval  42580
  Copyright terms: Public domain W3C validator