| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssrg | Structured version Visualization version GIF version | ||
| Description: A function is zero outside its support. Version of suppssr 8177 avoiding ax-rep 5237 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
| Ref | Expression |
|---|---|
| suppssrg.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppssrg.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| suppssrg.a | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| suppssrg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssrg | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3927 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
| 2 | suppssrg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | ffnd 6692 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | suppssrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 5 | suppssrg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 6 | elsuppfng 8151 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 8 | suppssrg.n | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 9 | 8 | sseld 3948 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
| 10 | 7, 9 | sylbird 260 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) → 𝑋 ∈ 𝑊)) |
| 11 | 10 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
| 12 | 11 | necon1bd 2944 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
| 13 | 12 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| 14 | 1, 13 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-supp 8143 |
| This theorem is referenced by: psrbaglesupp 21838 psrbaglefi 21842 mhpmulcl 22043 mhpvscacl 22048 evlsvvvallem2 42557 selvvvval 42580 |
| Copyright terms: Public domain | W3C validator |