Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppssrg | Structured version Visualization version GIF version |
Description: A function is zero outside its support. Version of suppssr 7983 avoiding ax-rep 5205 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.) |
Ref | Expression |
---|---|
suppssrg.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
suppssrg.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
suppssrg.a | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
suppssrg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
Ref | Expression |
---|---|
suppssrg | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3893 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
2 | suppssrg.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | ffnd 6585 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | suppssrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
5 | suppssrg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
6 | elsuppfng 7957 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
7 | 3, 4, 5, 6 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
8 | suppssrg.n | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
9 | 8 | sseld 3916 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
10 | 7, 9 | sylbird 259 | . . . . 5 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) → 𝑋 ∈ 𝑊)) |
11 | 10 | expdimp 452 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
12 | 11 | necon1bd 2960 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
13 | 12 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
14 | 1, 13 | sylan2b 593 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊆ wss 3883 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: psrbaglesupp 21037 psrbaglefi 21045 |
Copyright terms: Public domain | W3C validator |