MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssrg Structured version   Visualization version   GIF version

Theorem suppssrg 8219
Description: A function is zero outside its support. Version of suppssr 8218 avoiding ax-rep 5284 by assuming 𝐹 is a set rather than its domain 𝐴. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
suppssrg.f (𝜑𝐹:𝐴𝐵)
suppssrg.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssrg.a (𝜑𝐹𝑉)
suppssrg.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssrg ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssrg
StepHypRef Expression
1 eldif 3972 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 suppssrg.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
32ffnd 6737 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
4 suppssrg.a . . . . . . 7 (𝜑𝐹𝑉)
5 suppssrg.z . . . . . . 7 (𝜑𝑍𝑈)
6 elsuppfng 8192 . . . . . . 7 ((𝐹 Fn 𝐴𝐹𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
73, 4, 5, 6syl3anc 1370 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
8 suppssrg.n . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
98sseld 3993 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
107, 9sylbird 260 . . . . 5 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) → 𝑋𝑊))
1110expdimp 452 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
1211necon1bd 2955 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
1312impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
141, 13sylan2b 594 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  cdif 3959  wss 3962   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430   supp csupp 8183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-supp 8184
This theorem is referenced by:  psrbaglesupp  21959  psrbaglefi  21963  mhpmulcl  22170  mhpvscacl  22175  evlsvvvallem2  42548  selvvvval  42571
  Copyright terms: Public domain W3C validator