![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvvvallem2 | Structured version Visualization version GIF version |
Description: Lemma for theorems using evlsvvval 42550. (Contributed by SN, 8-Mar-2025.) |
Ref | Expression |
---|---|
evlsvvvallem2.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
evlsvvvallem2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
evlsvvvallem2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsvvvallem2.b | ⊢ 𝐵 = (Base‘𝑃) |
evlsvvvallem2.k | ⊢ 𝐾 = (Base‘𝑆) |
evlsvvvallem2.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
evlsvvvallem2.w | ⊢ ↑ = (.g‘𝑀) |
evlsvvvallem2.x | ⊢ · = (.r‘𝑆) |
evlsvvvallem2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlsvvvallem2.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsvvvallem2.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsvvvallem2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
evlsvvvallem2.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
Ref | Expression |
---|---|
evlsvvvallem2 | ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvvvallem2.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
2 | ovex 7464 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
3 | 1, 2 | rabex2 5347 | . . . 4 ⊢ 𝐷 ∈ V |
4 | 3 | mptex 7243 | . . 3 ⊢ (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V) |
6 | fvexd 6922 | . 2 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
7 | funmpt 6606 | . . 3 ⊢ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) |
9 | evlsvvvallem2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
10 | evlsvvvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
11 | eqid 2735 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
12 | evlsvvvallem2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
13 | 9, 10, 11, 12 | mplelsfi 22033 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑈)) |
14 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
15 | 9, 14, 10, 1, 12 | mplelf 22036 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
16 | ssidd 4019 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ (𝐹 supp (0g‘𝑈))) | |
17 | fvexd 6922 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) ∈ V) | |
18 | 15, 16, 12, 17 | suppssrg 8220 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑈)) |
19 | evlsvvvallem2.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
20 | evlsvvvallem2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
21 | eqid 2735 | . . . . . . . . . 10 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
22 | 20, 21 | subrg0 20596 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
23 | 19, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
24 | 23 | eqcomd 2741 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑆)) |
25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (0g‘𝑈) = (0g‘𝑆)) |
26 | 18, 25 | eqtrd 2775 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑆)) |
27 | 26 | oveq1d 7446 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) |
28 | evlsvvvallem2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
29 | evlsvvvallem2.x | . . . . 5 ⊢ · = (.r‘𝑆) | |
30 | evlsvvvallem2.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
31 | 30 | crngringd 20264 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Ring) |
32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → 𝑆 ∈ Ring) |
33 | eldifi 4141 | . . . . . 6 ⊢ (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈))) → 𝑏 ∈ 𝐷) | |
34 | evlsvvvallem2.m | . . . . . . 7 ⊢ 𝑀 = (mulGrp‘𝑆) | |
35 | evlsvvvallem2.w | . . . . . . 7 ⊢ ↑ = (.g‘𝑀) | |
36 | evlsvvvallem2.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
37 | 36 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
38 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
39 | evlsvvvallem2.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
40 | 39 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
41 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
42 | 1, 28, 34, 35, 37, 38, 40, 41 | evlsvvvallem 42548 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
43 | 33, 42 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
44 | 28, 29, 21, 32, 43 | ringlzd 20309 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
45 | 27, 44 | eqtrd 2775 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
46 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
47 | 45, 46 | suppss2 8224 | . 2 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) supp (0g‘𝑆)) ⊆ (𝐹 supp (0g‘𝑈))) |
48 | 5, 6, 8, 13, 47 | fsuppsssuppgd 9420 | 1 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ∖ cdif 3960 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 Fun wfun 6557 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 ↑m cmap 8865 Fincfn 8984 finSupp cfsupp 9399 ℕcn 12264 ℕ0cn0 12524 Basecbs 17245 ↾s cress 17274 .rcmulr 17299 0gc0g 17486 Σg cgsu 17487 .gcmg 19098 mulGrpcmgp 20152 Ringcrg 20251 CRingccrg 20252 SubRingcsubrg 20586 mPoly cmpl 21944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-tset 17317 df-0g 17488 df-gsum 17489 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-mulg 19099 df-subg 19154 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-subrg 20587 df-psr 21947 df-mpl 21949 |
This theorem is referenced by: evlsbagval 42553 evlvvvallem 42561 evlsmhpvvval 42582 mhphf 42584 |
Copyright terms: Public domain | W3C validator |