| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvvvallem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems using evlsvvval 42558. (Contributed by SN, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlsvvvallem2.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlsvvvallem2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsvvvallem2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsvvvallem2.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsvvvallem2.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsvvvallem2.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evlsvvvallem2.w | ⊢ ↑ = (.g‘𝑀) |
| evlsvvvallem2.x | ⊢ · = (.r‘𝑆) |
| evlsvvvallem2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlsvvvallem2.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsvvvallem2.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsvvvallem2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| evlsvvvallem2.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlsvvvallem2 | ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvvallem2.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 2 | ovex 7423 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 3 | 1, 2 | rabex2 5299 | . . . 4 ⊢ 𝐷 ∈ V |
| 4 | 3 | mptex 7200 | . . 3 ⊢ (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V) |
| 6 | fvexd 6876 | . 2 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 7 | funmpt 6557 | . . 3 ⊢ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) |
| 9 | evlsvvvallem2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 10 | evlsvvvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 11 | eqid 2730 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 12 | evlsvvvallem2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 9, 10, 11, 12 | mplelsfi 21911 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑈)) |
| 14 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 15 | 9, 14, 10, 1, 12 | mplelf 21914 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
| 16 | ssidd 3973 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ (𝐹 supp (0g‘𝑈))) | |
| 17 | fvexd 6876 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) ∈ V) | |
| 18 | 15, 16, 12, 17 | suppssrg 8178 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑈)) |
| 19 | evlsvvvallem2.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 20 | evlsvvvallem2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 21 | eqid 2730 | . . . . . . . . . 10 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 22 | 20, 21 | subrg0 20495 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
| 23 | 19, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 24 | 23 | eqcomd 2736 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑆)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (0g‘𝑈) = (0g‘𝑆)) |
| 26 | 18, 25 | eqtrd 2765 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 27 | 26 | oveq1d 7405 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) |
| 28 | evlsvvvallem2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 29 | evlsvvvallem2.x | . . . . 5 ⊢ · = (.r‘𝑆) | |
| 30 | evlsvvvallem2.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 31 | 30 | crngringd 20162 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → 𝑆 ∈ Ring) |
| 33 | eldifi 4097 | . . . . . 6 ⊢ (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈))) → 𝑏 ∈ 𝐷) | |
| 34 | evlsvvvallem2.m | . . . . . . 7 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 35 | evlsvvvallem2.w | . . . . . . 7 ⊢ ↑ = (.g‘𝑀) | |
| 36 | evlsvvvallem2.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 37 | 36 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 38 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
| 39 | evlsvvvallem2.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 40 | 39 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 41 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
| 42 | 1, 28, 34, 35, 37, 38, 40, 41 | evlsvvvallem 42556 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
| 43 | 33, 42 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
| 44 | 28, 29, 21, 32, 43 | ringlzd 20211 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
| 45 | 27, 44 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
| 46 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 47 | 45, 46 | suppss2 8182 | . 2 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) supp (0g‘𝑆)) ⊆ (𝐹 supp (0g‘𝑈))) |
| 48 | 5, 6, 8, 13, 47 | fsuppsssuppgd 9340 | 1 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∖ cdif 3914 class class class wbr 5110 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 ↑m cmap 8802 Fincfn 8921 finSupp cfsupp 9319 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 0gc0g 17409 Σg cgsu 17410 .gcmg 19006 mulGrpcmgp 20056 Ringcrg 20149 CRingccrg 20150 SubRingcsubrg 20485 mPoly cmpl 21822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-tset 17246 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrg 20486 df-psr 21825 df-mpl 21827 |
| This theorem is referenced by: evlsbagval 42561 evlvvvallem 42569 evlsmhpvvval 42590 mhphf 42592 |
| Copyright terms: Public domain | W3C validator |