Step | Hyp | Ref
| Expression |
1 | | evlsvvvallem2.d |
. . . . 5
β’ π· = {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} |
2 | | ovex 7438 |
. . . . 5
β’
(β0 βm πΌ) β V |
3 | 1, 2 | rabex2 5333 |
. . . 4
β’ π· β V |
4 | 3 | mptex 7221 |
. . 3
β’ (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) β V |
5 | 4 | a1i 11 |
. 2
β’ (π β (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) β V) |
6 | | fvexd 6903 |
. 2
β’ (π β (0gβπ) β V) |
7 | | funmpt 6583 |
. . 3
β’ Fun
(π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) |
8 | 7 | a1i 11 |
. 2
β’ (π β Fun (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))))) |
9 | | evlsvvvallem2.p |
. . 3
β’ π = (πΌ mPoly π) |
10 | | evlsvvvallem2.b |
. . 3
β’ π΅ = (Baseβπ) |
11 | | eqid 2732 |
. . 3
β’
(0gβπ) = (0gβπ) |
12 | | evlsvvvallem2.f |
. . 3
β’ (π β πΉ β π΅) |
13 | | evlsvvvallem2.u |
. . . . 5
β’ π = (π βΎs π
) |
14 | 13 | ovexi 7439 |
. . . 4
β’ π β V |
15 | 14 | a1i 11 |
. . 3
β’ (π β π β V) |
16 | 9, 10, 11, 12, 15 | mplelsfi 21545 |
. 2
β’ (π β πΉ finSupp (0gβπ)) |
17 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
18 | 9, 17, 10, 1, 12 | mplelf 21548 |
. . . . . . 7
β’ (π β πΉ:π·βΆ(Baseβπ)) |
19 | | ssidd 4004 |
. . . . . . 7
β’ (π β (πΉ supp (0gβπ)) β (πΉ supp (0gβπ))) |
20 | | fvexd 6903 |
. . . . . . 7
β’ (π β (0gβπ) β V) |
21 | 18, 19, 12, 20 | suppssrg 8178 |
. . . . . 6
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β (πΉβπ) = (0gβπ)) |
22 | | evlsvvvallem2.r |
. . . . . . . . 9
β’ (π β π
β (SubRingβπ)) |
23 | | eqid 2732 |
. . . . . . . . . 10
β’
(0gβπ) = (0gβπ) |
24 | 13, 23 | subrg0 20362 |
. . . . . . . . 9
β’ (π
β (SubRingβπ) β
(0gβπ) =
(0gβπ)) |
25 | 22, 24 | syl 17 |
. . . . . . . 8
β’ (π β (0gβπ) = (0gβπ)) |
26 | 25 | eqcomd 2738 |
. . . . . . 7
β’ (π β (0gβπ) = (0gβπ)) |
27 | 26 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β (0gβπ) = (0gβπ)) |
28 | 21, 27 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β (πΉβπ) = (0gβπ)) |
29 | 28 | oveq1d 7420 |
. . . 4
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = ((0gβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) |
30 | | evlsvvvallem2.k |
. . . . 5
β’ πΎ = (Baseβπ) |
31 | | evlsvvvallem2.x |
. . . . 5
β’ Β· =
(.rβπ) |
32 | | evlsvvvallem2.s |
. . . . . . 7
β’ (π β π β CRing) |
33 | 32 | crngringd 20062 |
. . . . . 6
β’ (π β π β Ring) |
34 | 33 | adantr 481 |
. . . . 5
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β π β Ring) |
35 | | eldifi 4125 |
. . . . . 6
β’ (π β (π· β (πΉ supp (0gβπ))) β π β π·) |
36 | | evlsvvvallem2.m |
. . . . . . 7
β’ π = (mulGrpβπ) |
37 | | evlsvvvallem2.w |
. . . . . . 7
β’ β =
(.gβπ) |
38 | | evlsvvvallem2.i |
. . . . . . . 8
β’ (π β πΌ β π) |
39 | 38 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π·) β πΌ β π) |
40 | 32 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π·) β π β CRing) |
41 | | evlsvvvallem2.a |
. . . . . . . 8
β’ (π β π΄ β (πΎ βm πΌ)) |
42 | 41 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π·) β π΄ β (πΎ βm πΌ)) |
43 | | simpr 485 |
. . . . . . 7
β’ ((π β§ π β π·) β π β π·) |
44 | 1, 30, 36, 37, 39, 40, 42, 43 | evlsvvvallem 41130 |
. . . . . 6
β’ ((π β§ π β π·) β (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))) β πΎ) |
45 | 35, 44 | sylan2 593 |
. . . . 5
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))) β πΎ) |
46 | 30, 31, 23, 34, 45 | ringlzd 41082 |
. . . 4
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β ((0gβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = (0gβπ)) |
47 | 29, 46 | eqtrd 2772 |
. . 3
β’ ((π β§ π β (π· β (πΉ supp (0gβπ)))) β ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£))))) = (0gβπ)) |
48 | 3 | a1i 11 |
. . 3
β’ (π β π· β V) |
49 | 47, 48 | suppss2 8181 |
. 2
β’ (π β ((π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) supp (0gβπ)) β (πΉ supp (0gβπ))) |
50 | 5, 6, 8, 16, 49 | fsuppsssuppgd 41061 |
1
β’ (π β (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π£ β πΌ β¦ ((πβπ£) β (π΄βπ£)))))) finSupp (0gβπ)) |