Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsvvvallem2 Structured version   Visualization version   GIF version

Theorem evlsvvvallem2 42572
Description: Lemma for theorems using evlsvvval 42573. (Contributed by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
evlsvvvallem2.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlsvvvallem2.p 𝑃 = (𝐼 mPoly 𝑈)
evlsvvvallem2.u 𝑈 = (𝑆s 𝑅)
evlsvvvallem2.b 𝐵 = (Base‘𝑃)
evlsvvvallem2.k 𝐾 = (Base‘𝑆)
evlsvvvallem2.m 𝑀 = (mulGrp‘𝑆)
evlsvvvallem2.w = (.g𝑀)
evlsvvvallem2.x · = (.r𝑆)
evlsvvvallem2.i (𝜑𝐼𝑉)
evlsvvvallem2.s (𝜑𝑆 ∈ CRing)
evlsvvvallem2.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvvvallem2.f (𝜑𝐹𝐵)
evlsvvvallem2.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
evlsvvvallem2 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑆))
Distinct variable groups:   𝐵,   ,𝐼   𝑣,𝐼   𝜑,𝑏,𝑣   𝑣,𝐵   𝑆,𝑏,𝑣   𝑣,𝐾   𝑈,𝑏   𝐹,𝑏   𝐷,𝑏,𝑣   ,𝑏
Allowed substitution hints:   𝜑()   𝐴(𝑣,,𝑏)   𝐵(𝑏)   𝐷()   𝑃(𝑣,,𝑏)   𝑅(𝑣,,𝑏)   𝑆()   · (𝑣,,𝑏)   𝑈(𝑣,)   (𝑣,,𝑏)   𝐹(𝑣,)   𝐼(𝑏)   𝐾(,𝑏)   𝑀(𝑣,,𝑏)   𝑉(𝑣,,𝑏)

Proof of Theorem evlsvvvallem2
StepHypRef Expression
1 evlsvvvallem2.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2 ovex 7464 . . . . 5 (ℕ0m 𝐼) ∈ V
31, 2rabex2 5341 . . . 4 𝐷 ∈ V
43mptex 7243 . . 3 (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ∈ V
54a1i 11 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ∈ V)
6 fvexd 6921 . 2 (𝜑 → (0g𝑆) ∈ V)
7 funmpt 6604 . . 3 Fun (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))
87a1i 11 . 2 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))))
9 evlsvvvallem2.p . . 3 𝑃 = (𝐼 mPoly 𝑈)
10 evlsvvvallem2.b . . 3 𝐵 = (Base‘𝑃)
11 eqid 2737 . . 3 (0g𝑈) = (0g𝑈)
12 evlsvvvallem2.f . . 3 (𝜑𝐹𝐵)
139, 10, 11, 12mplelsfi 22015 . 2 (𝜑𝐹 finSupp (0g𝑈))
14 eqid 2737 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
159, 14, 10, 1, 12mplelf 22018 . . . . . . 7 (𝜑𝐹:𝐷⟶(Base‘𝑈))
16 ssidd 4007 . . . . . . 7 (𝜑 → (𝐹 supp (0g𝑈)) ⊆ (𝐹 supp (0g𝑈)))
17 fvexd 6921 . . . . . . 7 (𝜑 → (0g𝑈) ∈ V)
1815, 16, 12, 17suppssrg 8221 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (𝐹𝑏) = (0g𝑈))
19 evlsvvvallem2.r . . . . . . . . 9 (𝜑𝑅 ∈ (SubRing‘𝑆))
20 evlsvvvallem2.u . . . . . . . . . 10 𝑈 = (𝑆s 𝑅)
21 eqid 2737 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
2220, 21subrg0 20579 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = (0g𝑈))
2319, 22syl 17 . . . . . . . 8 (𝜑 → (0g𝑆) = (0g𝑈))
2423eqcomd 2743 . . . . . . 7 (𝜑 → (0g𝑈) = (0g𝑆))
2524adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (0g𝑈) = (0g𝑆))
2618, 25eqtrd 2777 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (𝐹𝑏) = (0g𝑆))
2726oveq1d 7446 . . . 4 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = ((0g𝑆) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))
28 evlsvvvallem2.k . . . . 5 𝐾 = (Base‘𝑆)
29 evlsvvvallem2.x . . . . 5 · = (.r𝑆)
30 evlsvvvallem2.s . . . . . . 7 (𝜑𝑆 ∈ CRing)
3130crngringd 20243 . . . . . 6 (𝜑𝑆 ∈ Ring)
3231adantr 480 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → 𝑆 ∈ Ring)
33 eldifi 4131 . . . . . 6 (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈))) → 𝑏𝐷)
34 evlsvvvallem2.m . . . . . . 7 𝑀 = (mulGrp‘𝑆)
35 evlsvvvallem2.w . . . . . . 7 = (.g𝑀)
36 evlsvvvallem2.i . . . . . . . 8 (𝜑𝐼𝑉)
3736adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐼𝑉)
3830adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑆 ∈ CRing)
39 evlsvvvallem2.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐾m 𝐼))
4039adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐴 ∈ (𝐾m 𝐼))
41 simpr 484 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑏𝐷)
421, 28, 34, 35, 37, 38, 40, 41evlsvvvallem 42571 . . . . . 6 ((𝜑𝑏𝐷) → (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) ∈ 𝐾)
4333, 42sylan2 593 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) ∈ 𝐾)
4428, 29, 21, 32, 43ringlzd 20292 . . . 4 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → ((0g𝑆) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = (0g𝑆))
4527, 44eqtrd 2777 . . 3 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = (0g𝑆))
463a1i 11 . . 3 (𝜑𝐷 ∈ V)
4745, 46suppss2 8225 . 2 (𝜑 → ((𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) supp (0g𝑆)) ⊆ (𝐹 supp (0g𝑈)))
485, 6, 8, 13, 47fsuppsssuppgd 9422 1 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cdif 3948   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688  Fun wfun 6555  cfv 6561  (class class class)co 7431   supp csupp 8185  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  cn 12266  0cn0 12526  Basecbs 17247  s cress 17274  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  .gcmg 19085  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231  SubRingcsubrg 20569   mPoly cmpl 21926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrg 20570  df-psr 21929  df-mpl 21931
This theorem is referenced by:  evlsbagval  42576  evlvvvallem  42584  evlsmhpvvval  42605  mhphf  42607
  Copyright terms: Public domain W3C validator