| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvvvallem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems using evlsvvval 42596. (Contributed by SN, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlsvvvallem2.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlsvvvallem2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsvvvallem2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsvvvallem2.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsvvvallem2.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsvvvallem2.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evlsvvvallem2.w | ⊢ ↑ = (.g‘𝑀) |
| evlsvvvallem2.x | ⊢ · = (.r‘𝑆) |
| evlsvvvallem2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlsvvvallem2.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsvvvallem2.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsvvvallem2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| evlsvvvallem2.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlsvvvallem2 | ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvvallem2.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 2 | ovex 7374 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 3 | 1, 2 | rabex2 5274 | . . . 4 ⊢ 𝐷 ∈ V |
| 4 | 3 | mptex 7152 | . . 3 ⊢ (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V) |
| 6 | fvexd 6832 | . 2 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 7 | funmpt 6514 | . . 3 ⊢ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) |
| 9 | evlsvvvallem2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 10 | evlsvvvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 11 | eqid 2731 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 12 | evlsvvvallem2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 9, 10, 11, 12 | mplelsfi 21927 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑈)) |
| 14 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 15 | 9, 14, 10, 1, 12 | mplelf 21930 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
| 16 | ssidd 3953 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ (𝐹 supp (0g‘𝑈))) | |
| 17 | fvexd 6832 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) ∈ V) | |
| 18 | 15, 16, 12, 17 | suppssrg 8121 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑈)) |
| 19 | evlsvvvallem2.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 20 | evlsvvvallem2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 21 | eqid 2731 | . . . . . . . . . 10 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 22 | 20, 21 | subrg0 20489 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
| 23 | 19, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 24 | 23 | eqcomd 2737 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑆)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (0g‘𝑈) = (0g‘𝑆)) |
| 26 | 18, 25 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 27 | 26 | oveq1d 7356 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) |
| 28 | evlsvvvallem2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 29 | evlsvvvallem2.x | . . . . 5 ⊢ · = (.r‘𝑆) | |
| 30 | evlsvvvallem2.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 31 | 30 | crngringd 20159 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → 𝑆 ∈ Ring) |
| 33 | eldifi 4076 | . . . . . 6 ⊢ (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈))) → 𝑏 ∈ 𝐷) | |
| 34 | evlsvvvallem2.m | . . . . . . 7 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 35 | evlsvvvallem2.w | . . . . . . 7 ⊢ ↑ = (.g‘𝑀) | |
| 36 | evlsvvvallem2.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 37 | 36 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 38 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
| 39 | evlsvvvallem2.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 40 | 39 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 41 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
| 42 | 1, 28, 34, 35, 37, 38, 40, 41 | evlsvvvallem 42594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
| 43 | 33, 42 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
| 44 | 28, 29, 21, 32, 43 | ringlzd 20208 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
| 45 | 27, 44 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
| 46 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 47 | 45, 46 | suppss2 8125 | . 2 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) supp (0g‘𝑆)) ⊆ (𝐹 supp (0g‘𝑈))) |
| 48 | 5, 6, 8, 13, 47 | fsuppsssuppgd 9261 | 1 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∖ cdif 3894 class class class wbr 5086 ↦ cmpt 5167 ◡ccnv 5610 “ cima 5614 Fun wfun 6470 ‘cfv 6476 (class class class)co 7341 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 ↾s cress 17136 .rcmulr 17157 0gc0g 17338 Σg cgsu 17339 .gcmg 18975 mulGrpcmgp 20053 Ringcrg 20146 CRingccrg 20147 SubRingcsubrg 20479 mPoly cmpl 21838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-tset 17175 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-subrg 20480 df-psr 21841 df-mpl 21843 |
| This theorem is referenced by: evlsbagval 42599 evlvvvallem 42607 evlsmhpvvval 42628 mhphf 42630 |
| Copyright terms: Public domain | W3C validator |