![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvvvallem2 | Structured version Visualization version GIF version |
Description: Lemma for theorems using evlsvvval 42518. (Contributed by SN, 8-Mar-2025.) |
Ref | Expression |
---|---|
evlsvvvallem2.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
evlsvvvallem2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
evlsvvvallem2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsvvvallem2.b | ⊢ 𝐵 = (Base‘𝑃) |
evlsvvvallem2.k | ⊢ 𝐾 = (Base‘𝑆) |
evlsvvvallem2.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
evlsvvvallem2.w | ⊢ ↑ = (.g‘𝑀) |
evlsvvvallem2.x | ⊢ · = (.r‘𝑆) |
evlsvvvallem2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlsvvvallem2.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsvvvallem2.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsvvvallem2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
evlsvvvallem2.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
Ref | Expression |
---|---|
evlsvvvallem2 | ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvvvallem2.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
2 | ovex 7481 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
3 | 1, 2 | rabex2 5359 | . . . 4 ⊢ 𝐷 ∈ V |
4 | 3 | mptex 7260 | . . 3 ⊢ (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V) |
6 | fvexd 6935 | . 2 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
7 | funmpt 6616 | . . 3 ⊢ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) |
9 | evlsvvvallem2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
10 | evlsvvvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
11 | eqid 2740 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
12 | evlsvvvallem2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
13 | evlsvvvallem2.u | . . . . 5 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
14 | 13 | ovexi 7482 | . . . 4 ⊢ 𝑈 ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
16 | 9, 10, 11, 12, 15 | mplelsfi 22038 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑈)) |
17 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
18 | 9, 17, 10, 1, 12 | mplelf 22041 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
19 | ssidd 4032 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ (𝐹 supp (0g‘𝑈))) | |
20 | fvexd 6935 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) ∈ V) | |
21 | 18, 19, 12, 20 | suppssrg 8237 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑈)) |
22 | evlsvvvallem2.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
23 | eqid 2740 | . . . . . . . . . 10 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
24 | 13, 23 | subrg0 20607 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
25 | 22, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
26 | 25 | eqcomd 2746 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑆)) |
27 | 26 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (0g‘𝑈) = (0g‘𝑆)) |
28 | 21, 27 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑆)) |
29 | 28 | oveq1d 7463 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) |
30 | evlsvvvallem2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
31 | evlsvvvallem2.x | . . . . 5 ⊢ · = (.r‘𝑆) | |
32 | evlsvvvallem2.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
33 | 32 | crngringd 20273 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Ring) |
34 | 33 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → 𝑆 ∈ Ring) |
35 | eldifi 4154 | . . . . . 6 ⊢ (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈))) → 𝑏 ∈ 𝐷) | |
36 | evlsvvvallem2.m | . . . . . . 7 ⊢ 𝑀 = (mulGrp‘𝑆) | |
37 | evlsvvvallem2.w | . . . . . . 7 ⊢ ↑ = (.g‘𝑀) | |
38 | evlsvvvallem2.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
39 | 38 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
40 | 32 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
41 | evlsvvvallem2.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
42 | 41 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
43 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
44 | 1, 30, 36, 37, 39, 40, 42, 43 | evlsvvvallem 42516 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
45 | 35, 44 | sylan2 592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
46 | 30, 31, 23, 34, 45 | ringlzd 20318 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
47 | 29, 46 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
48 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
49 | 47, 48 | suppss2 8241 | . 2 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) supp (0g‘𝑆)) ⊆ (𝐹 supp (0g‘𝑈))) |
50 | 5, 6, 8, 16, 49 | fsuppsssuppgd 9451 | 1 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∖ cdif 3973 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 ↑m cmap 8884 Fincfn 9003 finSupp cfsupp 9431 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 ↾s cress 17287 .rcmulr 17312 0gc0g 17499 Σg cgsu 17500 .gcmg 19107 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 SubRingcsubrg 20595 mPoly cmpl 21949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrg 20597 df-psr 21952 df-mpl 21954 |
This theorem is referenced by: evlsbagval 42521 evlvvvallem 42529 evlsmhpvvval 42550 mhphf 42552 |
Copyright terms: Public domain | W3C validator |