Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsvvvallem2 Structured version   Visualization version   GIF version

Theorem evlsvvvallem2 41589
Description: Lemma for theorems using evlsvvval 41590. (Contributed by SN, 8-Mar-2025.)
Hypotheses
Ref Expression
evlsvvvallem2.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlsvvvallem2.p 𝑃 = (𝐼 mPoly 𝑈)
evlsvvvallem2.u 𝑈 = (𝑆s 𝑅)
evlsvvvallem2.b 𝐵 = (Base‘𝑃)
evlsvvvallem2.k 𝐾 = (Base‘𝑆)
evlsvvvallem2.m 𝑀 = (mulGrp‘𝑆)
evlsvvvallem2.w = (.g𝑀)
evlsvvvallem2.x · = (.r𝑆)
evlsvvvallem2.i (𝜑𝐼𝑉)
evlsvvvallem2.s (𝜑𝑆 ∈ CRing)
evlsvvvallem2.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvvvallem2.f (𝜑𝐹𝐵)
evlsvvvallem2.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
evlsvvvallem2 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑆))
Distinct variable groups:   𝐵,   ,𝐼   𝑣,𝐼   𝜑,𝑏,𝑣   𝑣,𝐵   𝑆,𝑏,𝑣   𝑣,𝐾   𝑈,𝑏   𝐹,𝑏   𝐷,𝑏,𝑣   ,𝑏
Allowed substitution hints:   𝜑()   𝐴(𝑣,,𝑏)   𝐵(𝑏)   𝐷()   𝑃(𝑣,,𝑏)   𝑅(𝑣,,𝑏)   𝑆()   · (𝑣,,𝑏)   𝑈(𝑣,)   (𝑣,,𝑏)   𝐹(𝑣,)   𝐼(𝑏)   𝐾(,𝑏)   𝑀(𝑣,,𝑏)   𝑉(𝑣,,𝑏)

Proof of Theorem evlsvvvallem2
StepHypRef Expression
1 evlsvvvallem2.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2 ovex 7434 . . . . 5 (ℕ0m 𝐼) ∈ V
31, 2rabex2 5324 . . . 4 𝐷 ∈ V
43mptex 7216 . . 3 (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ∈ V
54a1i 11 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) ∈ V)
6 fvexd 6896 . 2 (𝜑 → (0g𝑆) ∈ V)
7 funmpt 6576 . . 3 Fun (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))
87a1i 11 . 2 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))))
9 evlsvvvallem2.p . . 3 𝑃 = (𝐼 mPoly 𝑈)
10 evlsvvvallem2.b . . 3 𝐵 = (Base‘𝑃)
11 eqid 2724 . . 3 (0g𝑈) = (0g𝑈)
12 evlsvvvallem2.f . . 3 (𝜑𝐹𝐵)
13 evlsvvvallem2.u . . . . 5 𝑈 = (𝑆s 𝑅)
1413ovexi 7435 . . . 4 𝑈 ∈ V
1514a1i 11 . . 3 (𝜑𝑈 ∈ V)
169, 10, 11, 12, 15mplelsfi 21855 . 2 (𝜑𝐹 finSupp (0g𝑈))
17 eqid 2724 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
189, 17, 10, 1, 12mplelf 21858 . . . . . . 7 (𝜑𝐹:𝐷⟶(Base‘𝑈))
19 ssidd 3997 . . . . . . 7 (𝜑 → (𝐹 supp (0g𝑈)) ⊆ (𝐹 supp (0g𝑈)))
20 fvexd 6896 . . . . . . 7 (𝜑 → (0g𝑈) ∈ V)
2118, 19, 12, 20suppssrg 8176 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (𝐹𝑏) = (0g𝑈))
22 evlsvvvallem2.r . . . . . . . . 9 (𝜑𝑅 ∈ (SubRing‘𝑆))
23 eqid 2724 . . . . . . . . . 10 (0g𝑆) = (0g𝑆)
2413, 23subrg0 20466 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = (0g𝑈))
2522, 24syl 17 . . . . . . . 8 (𝜑 → (0g𝑆) = (0g𝑈))
2625eqcomd 2730 . . . . . . 7 (𝜑 → (0g𝑈) = (0g𝑆))
2726adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (0g𝑈) = (0g𝑆))
2821, 27eqtrd 2764 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (𝐹𝑏) = (0g𝑆))
2928oveq1d 7416 . . . 4 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = ((0g𝑆) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))))
30 evlsvvvallem2.k . . . . 5 𝐾 = (Base‘𝑆)
31 evlsvvvallem2.x . . . . 5 · = (.r𝑆)
32 evlsvvvallem2.s . . . . . . 7 (𝜑𝑆 ∈ CRing)
3332crngringd 20136 . . . . . 6 (𝜑𝑆 ∈ Ring)
3433adantr 480 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → 𝑆 ∈ Ring)
35 eldifi 4118 . . . . . 6 (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈))) → 𝑏𝐷)
36 evlsvvvallem2.m . . . . . . 7 𝑀 = (mulGrp‘𝑆)
37 evlsvvvallem2.w . . . . . . 7 = (.g𝑀)
38 evlsvvvallem2.i . . . . . . . 8 (𝜑𝐼𝑉)
3938adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐼𝑉)
4032adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑆 ∈ CRing)
41 evlsvvvallem2.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐾m 𝐼))
4241adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐴 ∈ (𝐾m 𝐼))
43 simpr 484 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑏𝐷)
441, 30, 36, 37, 39, 40, 42, 43evlsvvvallem 41588 . . . . . 6 ((𝜑𝑏𝐷) → (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) ∈ 𝐾)
4535, 44sylan2 592 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))) ∈ 𝐾)
4630, 31, 23, 34, 45ringlzd 20179 . . . 4 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → ((0g𝑆) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = (0g𝑆))
4729, 46eqtrd 2764 . . 3 ((𝜑𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g𝑈)))) → ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣))))) = (0g𝑆))
483a1i 11 . . 3 (𝜑𝐷 ∈ V)
4947, 48suppss2 8180 . 2 (𝜑 → ((𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) supp (0g𝑆)) ⊆ (𝐹 supp (0g𝑈)))
505, 6, 8, 16, 49fsuppsssuppgd 41523 1 (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466  cdif 3937   class class class wbr 5138  cmpt 5221  ccnv 5665  cima 5669  Fun wfun 6527  cfv 6533  (class class class)co 7401   supp csupp 8140  m cmap 8815  Fincfn 8934   finSupp cfsupp 9356  cn 12208  0cn0 12468  Basecbs 17140  s cress 17169  .rcmulr 17194  0gc0g 17381   Σg cgsu 17382  .gcmg 18982  mulGrpcmgp 20024  Ringcrg 20123  CRingccrg 20124  SubRingcsubrg 20454   mPoly cmpl 21759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-tset 17212  df-0g 17383  df-gsum 17384  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-grp 18853  df-minusg 18854  df-mulg 18983  df-subg 19035  df-cntz 19218  df-cmn 19687  df-abl 19688  df-mgp 20025  df-rng 20043  df-ur 20072  df-ring 20125  df-cring 20126  df-subrg 20456  df-psr 21762  df-mpl 21764
This theorem is referenced by:  evlsbagval  41593  evlvvvallem  41601  evlsmhpvvval  41622  mhphf  41624
  Copyright terms: Public domain W3C validator