| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvvvallem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems using evlsvvval 42524. (Contributed by SN, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlsvvvallem2.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlsvvvallem2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsvvvallem2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsvvvallem2.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsvvvallem2.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsvvvallem2.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evlsvvvallem2.w | ⊢ ↑ = (.g‘𝑀) |
| evlsvvvallem2.x | ⊢ · = (.r‘𝑆) |
| evlsvvvallem2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlsvvvallem2.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsvvvallem2.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsvvvallem2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| evlsvvvallem2.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlsvvvallem2 | ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvvallem2.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 2 | ovex 7402 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 3 | 1, 2 | rabex2 5291 | . . . 4 ⊢ 𝐷 ∈ V |
| 4 | 3 | mptex 7179 | . . 3 ⊢ (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) ∈ V) |
| 6 | fvexd 6855 | . 2 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 7 | funmpt 6538 | . . 3 ⊢ Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) | |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))))) |
| 9 | evlsvvvallem2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 10 | evlsvvvallem2.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 11 | eqid 2729 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 12 | evlsvvvallem2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 9, 10, 11, 12 | mplelsfi 21880 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝑈)) |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 15 | 9, 14, 10, 1, 12 | mplelf 21883 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
| 16 | ssidd 3967 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ (𝐹 supp (0g‘𝑈))) | |
| 17 | fvexd 6855 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) ∈ V) | |
| 18 | 15, 16, 12, 17 | suppssrg 8152 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑈)) |
| 19 | evlsvvvallem2.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 20 | evlsvvvallem2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 21 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 22 | 20, 21 | subrg0 20464 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
| 23 | 19, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 24 | 23 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑆)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (0g‘𝑈) = (0g‘𝑆)) |
| 26 | 18, 25 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 27 | 26 | oveq1d 7384 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) |
| 28 | evlsvvvallem2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 29 | evlsvvvallem2.x | . . . . 5 ⊢ · = (.r‘𝑆) | |
| 30 | evlsvvvallem2.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 31 | 30 | crngringd 20131 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → 𝑆 ∈ Ring) |
| 33 | eldifi 4090 | . . . . . 6 ⊢ (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈))) → 𝑏 ∈ 𝐷) | |
| 34 | evlsvvvallem2.m | . . . . . . 7 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 35 | evlsvvvallem2.w | . . . . . . 7 ⊢ ↑ = (.g‘𝑀) | |
| 36 | evlsvvvallem2.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 37 | 36 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 38 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
| 39 | evlsvvvallem2.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 40 | 39 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 41 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
| 42 | 1, 28, 34, 35, 37, 38, 40, 41 | evlsvvvallem 42522 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
| 43 | 33, 42 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))) ∈ 𝐾) |
| 44 | 28, 29, 21, 32, 43 | ringlzd 20180 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((0g‘𝑆) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
| 45 | 27, 44 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣))))) = (0g‘𝑆)) |
| 46 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 47 | 45, 46 | suppss2 8156 | . 2 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) supp (0g‘𝑆)) ⊆ (𝐹 supp (0g‘𝑈))) |
| 48 | 5, 6, 8, 13, 47 | fsuppsssuppgd 9309 | 1 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝑏‘𝑣) ↑ (𝐴‘𝑣)))))) finSupp (0g‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∖ cdif 3908 class class class wbr 5102 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 Fun wfun 6493 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 finSupp cfsupp 9288 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 0gc0g 17378 Σg cgsu 17379 .gcmg 18975 mulGrpcmgp 20025 Ringcrg 20118 CRingccrg 20119 SubRingcsubrg 20454 mPoly cmpl 21791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-tset 17215 df-0g 17380 df-gsum 17381 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrg 20455 df-psr 21794 df-mpl 21796 |
| This theorem is referenced by: evlsbagval 42527 evlvvvallem 42535 evlsmhpvvval 42556 mhphf 42558 |
| Copyright terms: Public domain | W3C validator |