![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssr | Structured version Visualization version GIF version |
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
suppssr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
suppssr.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
suppssr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
suppssr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
Ref | Expression |
---|---|
suppssr | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
2 | fvex 6933 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
3 | eldifsn 4811 | . . . . . 6 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍)) | |
4 | 2, 3 | mpbiran 708 | . . . . 5 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑋) ≠ 𝑍) |
5 | suppssr.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
6 | 5 | ffnd 6748 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
7 | suppssr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | suppssr.z | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
9 | elsuppfn 8211 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
10 | 6, 7, 8, 9 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
11 | ibar 528 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
12 | 2, 11 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) |
13 | 12, 3 | bitr4di 289 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ (𝐹‘𝑋) ∈ (V ∖ {𝑍}))) |
14 | 13 | pm5.32da 578 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
15 | 10, 14 | bitrd 279 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
16 | suppssr.n | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
17 | 16 | sseld 4007 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
18 | 15, 17 | sylbird 260 | . . . . . 6 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})) → 𝑋 ∈ 𝑊)) |
19 | 18 | expdimp 452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) → 𝑋 ∈ 𝑊)) |
20 | 4, 19 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
21 | 20 | necon1bd 2964 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
22 | 21 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
23 | 1, 22 | sylan2b 593 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: fsuppmptif 9468 fsuppco2 9472 fsuppcor 9473 cantnfp1lem1 9747 cantnfp1lem3 9749 cantnflem1 9758 cnfcom2lem 9770 gsumval3 19949 gsumcllem 19950 gsumzaddlem 19963 gsumzmhm 19979 gsumpt 20004 gsum2dlem1 20012 gsum2dlem2 20013 gsum2d 20014 gsumxp2 20022 dprdfinv 20063 dprdfadd 20064 dmdprdsplitlem 20081 dpjidcl 20102 gsumdixp 20342 lcomfsupp 20922 uvcresum 21836 frlmsslsp 21839 mplsubglem 22042 mpllsslem 22043 mplsubrglem 22047 mplmonmul 22077 mplcoe1 22078 mplcoe5 22081 mplbas2 22083 evlslem4 22123 evlslem2 22126 rrxcph 25445 rrxmval 25458 rrxmetlem 25460 rrxmet 25461 rrxdstprj1 25462 deg1mul3le 26176 suppovss 32697 elrspunidl 33421 fedgmullem1 33642 eulerpartlemb 34333 evlsvvvallem 42516 evlsvvval 42518 evlselv 42542 fsuppssindlem1 42546 evlsmhpvvval 42550 |
Copyright terms: Public domain | W3C validator |