MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssr Structured version   Visualization version   GIF version

Theorem suppssr 8218
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssr.f (𝜑𝐹:𝐴𝐵)
suppssr.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssr.a (𝜑𝐴𝑉)
suppssr.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssr ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssr
StepHypRef Expression
1 eldif 3972 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 fvex 6919 . . . . . 6 (𝐹𝑋) ∈ V
3 eldifsn 4790 . . . . . 6 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍))
42, 3mpbiran 709 . . . . 5 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑋) ≠ 𝑍)
5 suppssr.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
65ffnd 6737 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
7 suppssr.a . . . . . . . . 9 (𝜑𝐴𝑉)
8 suppssr.z . . . . . . . . 9 (𝜑𝑍𝑈)
9 elsuppfn 8193 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
106, 7, 8, 9syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
11 ibar 528 . . . . . . . . . . 11 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
122, 11mp1i 13 . . . . . . . . . 10 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
1312, 3bitr4di 289 . . . . . . . . 9 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ (𝐹𝑋) ∈ (V ∖ {𝑍})))
1413pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
1510, 14bitrd 279 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
16 suppssr.n . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
1716sseld 3993 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
1815, 17sylbird 260 . . . . . 6 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍})) → 𝑋𝑊))
1918expdimp 452 . . . . 5 ((𝜑𝑋𝐴) → ((𝐹𝑋) ∈ (V ∖ {𝑍}) → 𝑋𝑊))
204, 19biimtrrid 243 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
2120necon1bd 2955 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
2221impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
231, 22sylan2b 594 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  cdif 3959  wss 3962  {csn 4630   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430   supp csupp 8183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-supp 8184
This theorem is referenced by:  fsuppmptif  9436  fsuppco2  9440  fsuppcor  9441  cantnfp1lem1  9715  cantnfp1lem3  9717  cantnflem1  9726  cnfcom2lem  9738  gsumval3  19939  gsumcllem  19940  gsumzaddlem  19953  gsumzmhm  19969  gsumpt  19994  gsum2dlem1  20002  gsum2dlem2  20003  gsum2d  20004  gsumxp2  20012  dprdfinv  20053  dprdfadd  20054  dmdprdsplitlem  20071  dpjidcl  20092  gsumdixp  20332  lcomfsupp  20916  uvcresum  21830  frlmsslsp  21833  mplsubglem  22036  mpllsslem  22037  mplsubrglem  22041  mplmonmul  22071  mplcoe1  22072  mplcoe5  22075  mplbas2  22077  evlslem4  22117  evlslem2  22120  rrxcph  25439  rrxmval  25452  rrxmetlem  25454  rrxmet  25455  rrxdstprj1  25456  deg1mul3le  26170  suppovss  32695  elrspunidl  33435  fedgmullem1  33656  eulerpartlemb  34349  evlsvvvallem  42547  evlsvvval  42549  evlselv  42573  fsuppssindlem1  42577  evlsmhpvvval  42581
  Copyright terms: Public domain W3C validator