| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssr | Structured version Visualization version GIF version | ||
| Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| suppssr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppssr.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| suppssr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| suppssr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssr | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3936 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
| 2 | fvex 6889 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
| 3 | eldifsn 4762 | . . . . . 6 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍)) | |
| 4 | 2, 3 | mpbiran 709 | . . . . 5 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑋) ≠ 𝑍) |
| 5 | suppssr.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 6 | 5 | ffnd 6707 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 7 | suppssr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | suppssr.z | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 9 | elsuppfn 8169 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 11 | ibar 528 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 12 | 2, 11 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 13 | 12, 3 | bitr4di 289 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ (𝐹‘𝑋) ∈ (V ∖ {𝑍}))) |
| 14 | 13 | pm5.32da 579 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
| 15 | 10, 14 | bitrd 279 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
| 16 | suppssr.n | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 17 | 16 | sseld 3957 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
| 18 | 15, 17 | sylbird 260 | . . . . . 6 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})) → 𝑋 ∈ 𝑊)) |
| 19 | 18 | expdimp 452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) → 𝑋 ∈ 𝑊)) |
| 20 | 4, 19 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
| 21 | 20 | necon1bd 2950 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
| 22 | 21 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| 23 | 1, 22 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supp csupp 8159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-supp 8160 |
| This theorem is referenced by: fsuppmptif 9411 fsuppco2 9415 fsuppcor 9416 cantnfp1lem1 9692 cantnfp1lem3 9694 cantnflem1 9703 cnfcom2lem 9715 gsumval3 19888 gsumcllem 19889 gsumzaddlem 19902 gsumzmhm 19918 gsumpt 19943 gsum2dlem1 19951 gsum2dlem2 19952 gsum2d 19953 gsumxp2 19961 dprdfinv 20002 dprdfadd 20003 dmdprdsplitlem 20020 dpjidcl 20041 gsumdixp 20279 lcomfsupp 20859 uvcresum 21753 frlmsslsp 21756 mplsubglem 21959 mpllsslem 21960 mplsubrglem 21964 mplmonmul 21994 mplcoe1 21995 mplcoe5 21998 mplbas2 22000 evlslem4 22034 evlslem2 22037 rrxcph 25344 rrxmval 25357 rrxmetlem 25359 rrxmet 25360 rrxdstprj1 25361 deg1mul3le 26074 suppovss 32658 elrspunidl 33443 fedgmullem1 33669 eulerpartlemb 34400 evlsvvvallem 42584 evlsvvval 42586 evlselv 42610 fsuppssindlem1 42614 evlsmhpvvval 42618 |
| Copyright terms: Public domain | W3C validator |