MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssr Structured version   Visualization version   GIF version

Theorem suppssr 8220
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssr.f (𝜑𝐹:𝐴𝐵)
suppssr.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssr.a (𝜑𝐴𝑉)
suppssr.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssr ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssr
StepHypRef Expression
1 eldif 3961 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 fvex 6919 . . . . . 6 (𝐹𝑋) ∈ V
3 eldifsn 4786 . . . . . 6 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍))
42, 3mpbiran 709 . . . . 5 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑋) ≠ 𝑍)
5 suppssr.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
65ffnd 6737 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
7 suppssr.a . . . . . . . . 9 (𝜑𝐴𝑉)
8 suppssr.z . . . . . . . . 9 (𝜑𝑍𝑈)
9 elsuppfn 8195 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
106, 7, 8, 9syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
11 ibar 528 . . . . . . . . . . 11 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
122, 11mp1i 13 . . . . . . . . . 10 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
1312, 3bitr4di 289 . . . . . . . . 9 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ (𝐹𝑋) ∈ (V ∖ {𝑍})))
1413pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
1510, 14bitrd 279 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
16 suppssr.n . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
1716sseld 3982 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
1815, 17sylbird 260 . . . . . 6 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍})) → 𝑋𝑊))
1918expdimp 452 . . . . 5 ((𝜑𝑋𝐴) → ((𝐹𝑋) ∈ (V ∖ {𝑍}) → 𝑋𝑊))
204, 19biimtrrid 243 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
2120necon1bd 2958 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
2221impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
231, 22sylan2b 594 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  wss 3951  {csn 4626   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  fsuppmptif  9439  fsuppco2  9443  fsuppcor  9444  cantnfp1lem1  9718  cantnfp1lem3  9720  cantnflem1  9729  cnfcom2lem  9741  gsumval3  19925  gsumcllem  19926  gsumzaddlem  19939  gsumzmhm  19955  gsumpt  19980  gsum2dlem1  19988  gsum2dlem2  19989  gsum2d  19990  gsumxp2  19998  dprdfinv  20039  dprdfadd  20040  dmdprdsplitlem  20057  dpjidcl  20078  gsumdixp  20316  lcomfsupp  20900  uvcresum  21813  frlmsslsp  21816  mplsubglem  22019  mpllsslem  22020  mplsubrglem  22024  mplmonmul  22054  mplcoe1  22055  mplcoe5  22058  mplbas2  22060  evlslem4  22100  evlslem2  22103  rrxcph  25426  rrxmval  25439  rrxmetlem  25441  rrxmet  25442  rrxdstprj1  25443  deg1mul3le  26156  suppovss  32690  elrspunidl  33456  fedgmullem1  33680  eulerpartlemb  34370  evlsvvvallem  42571  evlsvvval  42573  evlselv  42597  fsuppssindlem1  42601  evlsmhpvvval  42605
  Copyright terms: Public domain W3C validator