MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssr Structured version   Visualization version   GIF version

Theorem suppssr 8131
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssr.f (𝜑𝐹:𝐴𝐵)
suppssr.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssr.a (𝜑𝐴𝑉)
suppssr.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssr ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssr
StepHypRef Expression
1 eldif 3908 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 fvex 6841 . . . . . 6 (𝐹𝑋) ∈ V
3 eldifsn 4737 . . . . . 6 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍))
42, 3mpbiran 709 . . . . 5 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑋) ≠ 𝑍)
5 suppssr.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
65ffnd 6657 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
7 suppssr.a . . . . . . . . 9 (𝜑𝐴𝑉)
8 suppssr.z . . . . . . . . 9 (𝜑𝑍𝑈)
9 elsuppfn 8106 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
106, 7, 8, 9syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
11 ibar 528 . . . . . . . . . . 11 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
122, 11mp1i 13 . . . . . . . . . 10 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
1312, 3bitr4di 289 . . . . . . . . 9 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ (𝐹𝑋) ∈ (V ∖ {𝑍})))
1413pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
1510, 14bitrd 279 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
16 suppssr.n . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
1716sseld 3929 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
1815, 17sylbird 260 . . . . . 6 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍})) → 𝑋𝑊))
1918expdimp 452 . . . . 5 ((𝜑𝑋𝐴) → ((𝐹𝑋) ∈ (V ∖ {𝑍}) → 𝑋𝑊))
204, 19biimtrrid 243 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
2120necon1bd 2947 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
2221impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
231, 22sylan2b 594 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  wss 3898  {csn 4575   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352   supp csupp 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-supp 8097
This theorem is referenced by:  fsuppmptif  9290  fsuppco2  9294  fsuppcor  9295  cantnfp1lem1  9575  cantnfp1lem3  9577  cantnflem1  9586  cnfcom2lem  9598  gsumval3  19821  gsumcllem  19822  gsumzaddlem  19835  gsumzmhm  19851  gsumpt  19876  gsum2dlem1  19884  gsum2dlem2  19885  gsum2d  19886  gsumxp2  19894  dprdfinv  19935  dprdfadd  19936  dmdprdsplitlem  19953  dpjidcl  19974  gsumdixp  20239  lcomfsupp  20837  uvcresum  21732  frlmsslsp  21735  mplsubglem  21937  mpllsslem  21938  mplsubrglem  21942  mplmonmul  21972  mplcoe1  21973  mplcoe5  21976  mplbas2  21978  evlslem4  22012  evlslem2  22015  rrxcph  25320  rrxmval  25333  rrxmetlem  25335  rrxmet  25336  rrxdstprj1  25337  deg1mul3le  26050  suppovss  32666  elrspunidl  33400  fedgmullem1  33663  eulerpartlemb  34402  evlsvvvallem  42680  evlsvvval  42682  evlselv  42706  fsuppssindlem1  42710  evlsmhpvvval  42714
  Copyright terms: Public domain W3C validator