MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssr Structured version   Visualization version   GIF version

Theorem suppssr 8181
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssr.f (𝜑𝐹:𝐴𝐵)
suppssr.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssr.a (𝜑𝐴𝑉)
suppssr.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssr ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssr
StepHypRef Expression
1 eldif 3959 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 fvex 6905 . . . . . 6 (𝐹𝑋) ∈ V
3 eldifsn 4791 . . . . . 6 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍))
42, 3mpbiran 708 . . . . 5 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑋) ≠ 𝑍)
5 suppssr.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
65ffnd 6719 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
7 suppssr.a . . . . . . . . 9 (𝜑𝐴𝑉)
8 suppssr.z . . . . . . . . 9 (𝜑𝑍𝑈)
9 elsuppfn 8156 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
106, 7, 8, 9syl3anc 1372 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
11 ibar 530 . . . . . . . . . . 11 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
122, 11mp1i 13 . . . . . . . . . 10 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
1312, 3bitr4di 289 . . . . . . . . 9 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ (𝐹𝑋) ∈ (V ∖ {𝑍})))
1413pm5.32da 580 . . . . . . . 8 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
1510, 14bitrd 279 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
16 suppssr.n . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
1716sseld 3982 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
1815, 17sylbird 260 . . . . . 6 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍})) → 𝑋𝑊))
1918expdimp 454 . . . . 5 ((𝜑𝑋𝐴) → ((𝐹𝑋) ∈ (V ∖ {𝑍}) → 𝑋𝑊))
204, 19biimtrrid 242 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
2120necon1bd 2959 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
2221impr 456 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
231, 22sylan2b 595 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  cdif 3946  wss 3949  {csn 4629   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7409   supp csupp 8146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-supp 8147
This theorem is referenced by:  fsuppmptif  9394  fsuppco2  9398  fsuppcor  9399  cantnfp1lem1  9673  cantnfp1lem3  9675  cantnflem1  9684  cnfcom2lem  9696  gsumval3  19775  gsumcllem  19776  gsumzaddlem  19789  gsumzmhm  19805  gsumpt  19830  gsum2dlem1  19838  gsum2dlem2  19839  gsum2d  19840  gsumxp2  19848  dprdfinv  19889  dprdfadd  19890  dmdprdsplitlem  19907  dpjidcl  19928  gsumdixp  20131  lcomfsupp  20512  uvcresum  21348  frlmsslsp  21351  psrbaglesuppOLD  21478  psrbagaddclOLD  21482  psrbaglefiOLD  21486  mplsubglem  21558  mpllsslem  21559  mplsubrglem  21563  mplmonmul  21591  mplcoe1  21592  mplcoe5  21595  mplbas2  21597  evlslem4  21637  evlslem2  21642  mhpmulcl  21692  mhpvscacl  21697  rrxcph  24909  rrxmval  24922  rrxmetlem  24924  rrxmet  24925  rrxdstprj1  24926  deg1mul3le  25634  suppovss  31906  elrspunidl  32546  fedgmullem1  32714  eulerpartlemb  33367  evlsvvvallem  41133  evlsvvval  41135  evlselv  41159  fsuppssindlem1  41163  evlsmhpvvval  41167
  Copyright terms: Public domain W3C validator