| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssr | Structured version Visualization version GIF version | ||
| Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| suppssr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppssr.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| suppssr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| suppssr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssr | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3924 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
| 2 | fvex 6871 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
| 3 | eldifsn 4750 | . . . . . 6 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍)) | |
| 4 | 2, 3 | mpbiran 709 | . . . . 5 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑋) ≠ 𝑍) |
| 5 | suppssr.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 6 | 5 | ffnd 6689 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 7 | suppssr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | suppssr.z | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 9 | elsuppfn 8149 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 11 | ibar 528 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 12 | 2, 11 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 13 | 12, 3 | bitr4di 289 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ (𝐹‘𝑋) ∈ (V ∖ {𝑍}))) |
| 14 | 13 | pm5.32da 579 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
| 15 | 10, 14 | bitrd 279 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
| 16 | suppssr.n | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 17 | 16 | sseld 3945 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
| 18 | 15, 17 | sylbird 260 | . . . . . 6 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})) → 𝑋 ∈ 𝑊)) |
| 19 | 18 | expdimp 452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) → 𝑋 ∈ 𝑊)) |
| 20 | 4, 19 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
| 21 | 20 | necon1bd 2943 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
| 22 | 21 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| 23 | 1, 22 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-supp 8140 |
| This theorem is referenced by: fsuppmptif 9350 fsuppco2 9354 fsuppcor 9355 cantnfp1lem1 9631 cantnfp1lem3 9633 cantnflem1 9642 cnfcom2lem 9654 gsumval3 19837 gsumcllem 19838 gsumzaddlem 19851 gsumzmhm 19867 gsumpt 19892 gsum2dlem1 19900 gsum2dlem2 19901 gsum2d 19902 gsumxp2 19910 dprdfinv 19951 dprdfadd 19952 dmdprdsplitlem 19969 dpjidcl 19990 gsumdixp 20228 lcomfsupp 20808 uvcresum 21702 frlmsslsp 21705 mplsubglem 21908 mpllsslem 21909 mplsubrglem 21913 mplmonmul 21943 mplcoe1 21944 mplcoe5 21947 mplbas2 21949 evlslem4 21983 evlslem2 21986 rrxcph 25292 rrxmval 25305 rrxmetlem 25307 rrxmet 25308 rrxdstprj1 25309 deg1mul3le 26022 suppovss 32604 elrspunidl 33399 fedgmullem1 33625 eulerpartlemb 34359 evlsvvvallem 42549 evlsvvval 42551 evlselv 42575 fsuppssindlem1 42579 evlsmhpvvval 42583 |
| Copyright terms: Public domain | W3C validator |