| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssr | Structured version Visualization version GIF version | ||
| Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| suppssr.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| suppssr.n | ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) |
| suppssr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| suppssr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| suppssr | ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3915 | . 2 ⊢ (𝑋 ∈ (𝐴 ∖ 𝑊) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) | |
| 2 | fvex 6839 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
| 3 | eldifsn 4740 | . . . . . 6 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍)) | |
| 4 | 2, 3 | mpbiran 709 | . . . . 5 ⊢ ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑋) ≠ 𝑍) |
| 5 | suppssr.f | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 6 | 5 | ffnd 6657 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 7 | suppssr.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | suppssr.z | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 9 | elsuppfn 8110 | . . . . . . . . 9 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 11 | ibar 528 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑋) ∈ V → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 12 | 2, 11 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ ((𝐹‘𝑋) ∈ V ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 13 | 12, 3 | bitr4di 289 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 ↔ (𝐹‘𝑋) ∈ (V ∖ {𝑍}))) |
| 14 | 13 | pm5.32da 579 | . . . . . . . 8 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
| 15 | 10, 14 | bitrd 279 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})))) |
| 16 | suppssr.n | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | |
| 17 | 16 | sseld 3936 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋 ∈ 𝑊)) |
| 18 | 15, 17 | sylbird 260 | . . . . . 6 ⊢ (𝜑 → ((𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ (V ∖ {𝑍})) → 𝑋 ∈ 𝑊)) |
| 19 | 18 | expdimp 452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ∈ (V ∖ {𝑍}) → 𝑋 ∈ 𝑊)) |
| 20 | 4, 19 | biimtrrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) ≠ 𝑍 → 𝑋 ∈ 𝑊)) |
| 21 | 20 | necon1bd 2943 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (¬ 𝑋 ∈ 𝑊 → (𝐹‘𝑋) = 𝑍)) |
| 22 | 21 | impr 454 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| 23 | 1, 22 | sylan2b 594 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 supp csupp 8100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-supp 8101 |
| This theorem is referenced by: fsuppmptif 9308 fsuppco2 9312 fsuppcor 9313 cantnfp1lem1 9593 cantnfp1lem3 9595 cantnflem1 9604 cnfcom2lem 9616 gsumval3 19804 gsumcllem 19805 gsumzaddlem 19818 gsumzmhm 19834 gsumpt 19859 gsum2dlem1 19867 gsum2dlem2 19868 gsum2d 19869 gsumxp2 19877 dprdfinv 19918 dprdfadd 19919 dmdprdsplitlem 19936 dpjidcl 19957 gsumdixp 20222 lcomfsupp 20823 uvcresum 21718 frlmsslsp 21721 mplsubglem 21924 mpllsslem 21925 mplsubrglem 21929 mplmonmul 21959 mplcoe1 21960 mplcoe5 21963 mplbas2 21965 evlslem4 21999 evlslem2 22002 rrxcph 25308 rrxmval 25321 rrxmetlem 25323 rrxmet 25324 rrxdstprj1 25325 deg1mul3le 26038 suppovss 32637 elrspunidl 33375 fedgmullem1 33601 eulerpartlemb 34335 evlsvvvallem 42534 evlsvvval 42536 evlselv 42560 fsuppssindlem1 42564 evlsmhpvvval 42568 |
| Copyright terms: Public domain | W3C validator |