MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssr Structured version   Visualization version   GIF version

Theorem suppssr 7983
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssr.f (𝜑𝐹:𝐴𝐵)
suppssr.n (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
suppssr.a (𝜑𝐴𝑉)
suppssr.z (𝜑𝑍𝑈)
Assertion
Ref Expression
suppssr ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)

Proof of Theorem suppssr
StepHypRef Expression
1 eldif 3893 . 2 (𝑋 ∈ (𝐴𝑊) ↔ (𝑋𝐴 ∧ ¬ 𝑋𝑊))
2 fvex 6769 . . . . . 6 (𝐹𝑋) ∈ V
3 eldifsn 4717 . . . . . 6 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍))
42, 3mpbiran 705 . . . . 5 ((𝐹𝑋) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑋) ≠ 𝑍)
5 suppssr.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
65ffnd 6585 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
7 suppssr.a . . . . . . . . 9 (𝜑𝐴𝑉)
8 suppssr.z . . . . . . . . 9 (𝜑𝑍𝑈)
9 elsuppfn 7958 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑈) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
106, 7, 8, 9syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
11 ibar 528 . . . . . . . . . . 11 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
122, 11mp1i 13 . . . . . . . . . 10 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ ((𝐹𝑋) ∈ V ∧ (𝐹𝑋) ≠ 𝑍)))
1312, 3bitr4di 288 . . . . . . . . 9 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍 ↔ (𝐹𝑋) ∈ (V ∖ {𝑍})))
1413pm5.32da 578 . . . . . . . 8 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
1510, 14bitrd 278 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍}))))
16 suppssr.n . . . . . . . 8 (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊)
1716sseld 3916 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) → 𝑋𝑊))
1815, 17sylbird 259 . . . . . 6 (𝜑 → ((𝑋𝐴 ∧ (𝐹𝑋) ∈ (V ∖ {𝑍})) → 𝑋𝑊))
1918expdimp 452 . . . . 5 ((𝜑𝑋𝐴) → ((𝐹𝑋) ∈ (V ∖ {𝑍}) → 𝑋𝑊))
204, 19syl5bir 242 . . . 4 ((𝜑𝑋𝐴) → ((𝐹𝑋) ≠ 𝑍𝑋𝑊))
2120necon1bd 2960 . . 3 ((𝜑𝑋𝐴) → (¬ 𝑋𝑊 → (𝐹𝑋) = 𝑍))
2221impr 454 . 2 ((𝜑 ∧ (𝑋𝐴 ∧ ¬ 𝑋𝑊)) → (𝐹𝑋) = 𝑍)
231, 22sylan2b 593 1 ((𝜑𝑋 ∈ (𝐴𝑊)) → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255   supp csupp 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-supp 7949
This theorem is referenced by:  fsuppmptif  9088  fsuppco2  9092  fsuppcor  9093  cantnfp1lem1  9366  cantnfp1lem3  9368  cantnflem1  9377  cnfcom2lem  9389  gsumval3  19423  gsumcllem  19424  gsumzaddlem  19437  gsumzmhm  19453  gsumpt  19478  gsum2dlem1  19486  gsum2dlem2  19487  gsum2d  19488  gsumxp2  19496  dprdfinv  19537  dprdfadd  19538  dmdprdsplitlem  19555  dpjidcl  19576  gsumdixp  19763  lcomfsupp  20078  uvcresum  20910  frlmsslsp  20913  psrbaglesuppOLD  21038  psrbagaddclOLD  21042  psrbaglefiOLD  21046  mplsubglem  21115  mpllsslem  21116  mplsubrglem  21120  mplmonmul  21147  mplcoe1  21148  mplcoe5  21151  mplbas2  21153  evlslem4  21194  evlslem2  21199  mhpmulcl  21249  mhpvscacl  21254  rrxcph  24461  rrxmval  24474  rrxmetlem  24476  rrxmet  24477  rrxdstprj1  24478  deg1mul3le  25186  suppovss  30919  elrspunidl  31508  fedgmullem1  31612  eulerpartlemb  32235  evlsbagval  40198  fsuppssindlem1  40203
  Copyright terms: Public domain W3C validator