MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvradcnv Structured version   Visualization version   GIF version

Theorem dvradcnv 25485
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dvradcnv.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv.h 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
dvradcnv.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv.x (𝜑𝑋 ∈ ℂ)
dvradcnv.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟   𝑛,𝑟,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12549 . 2 0 = (ℤ‘0)
2 1nn0 12179 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 ax-1cn 10860 . . . . 5 1 ∈ ℂ
5 nn0cn 12173 . . . . . 6 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
65adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7 nn0ex 12169 . . . . . . 7 0 ∈ V
87mptex 7081 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) ∈ V
98shftval4 14716 . . . . 5 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
104, 6, 9sylancr 586 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
11 addcom 11091 . . . . . 6 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + 𝑘) = (𝑘 + 1))
124, 6, 11sylancr 586 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 + 𝑘) = (𝑘 + 1))
1312fveq2d 6760 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)))
14 peano2nn0 12203 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
1514adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
16 id 22 . . . . . . . 8 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
17 2fveq3 6761 . . . . . . . 8 (𝑖 = (𝑘 + 1) → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘(𝑘 + 1))))
1816, 17oveq12d 7273 . . . . . . 7 (𝑖 = (𝑘 + 1) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
19 eqid 2738 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))
20 ovex 7288 . . . . . . 7 ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) ∈ V
2118, 19, 20fvmpt 6857 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
2215, 21syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
23 dvradcnv.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
24 dvradcnv.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
2524pserval2 25475 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2623, 14, 25syl2an 595 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2726fveq2d 6760 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘(𝑘 + 1))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
2827oveq2d 7271 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
2922, 28eqtrd 2778 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3010, 13, 293eqtrd 2782 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3115nn0red 12224 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
32 dvradcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
33 ffvelrn 6941 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3432, 14, 33syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
35 expcl 13728 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3623, 14, 35syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3734, 36mulcld 10926 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
3837abscld 15076 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
3931, 38remulcld 10936 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℝ)
4030, 39eqeltrd 2839 . 2 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℝ)
41 oveq1 7262 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
4241fveq2d 6760 . . . . . . 7 (𝑛 = 𝑘 → (𝐴‘(𝑛 + 1)) = (𝐴‘(𝑘 + 1)))
4341, 42oveq12d 7273 . . . . . 6 (𝑛 = 𝑘 → ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
44 oveq2 7263 . . . . . 6 (𝑛 = 𝑘 → (𝑋𝑛) = (𝑋𝑘))
4543, 44oveq12d 7273 . . . . 5 (𝑛 = 𝑘 → (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
46 dvradcnv.h . . . . 5 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
47 ovex 7288 . . . . 5 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ V
4845, 46, 47fvmpt 6857 . . . 4 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
4948adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
5015nn0cnd 12225 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
5150, 34mulcld 10926 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ)
52 expcl 13728 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5323, 52sylan 579 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5451, 53mulcld 10926 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ ℂ)
5549, 54eqeltrd 2839 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) ∈ ℂ)
56 dvradcnv.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
57 dvradcnv.l . . . . . . . 8 (𝜑 → (abs‘𝑋) < 𝑅)
58 id 22 . . . . . . . . . 10 (𝑖 = 𝑘𝑖 = 𝑘)
59 2fveq3 6761 . . . . . . . . . 10 (𝑖 = 𝑘 → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘𝑘)))
6058, 59oveq12d 7273 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6160cbvmptv 5183 . . . . . . . 8 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6224, 32, 56, 23, 57, 61radcnvlt1 25482 . . . . . . 7 (𝜑 → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
6362simpld 494 . . . . . 6 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ )
64 climdm 15191 . . . . . 6 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ↔ seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
6563, 64sylib 217 . . . . 5 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
66 0z 12260 . . . . . 6 0 ∈ ℤ
67 neg1z 12286 . . . . . 6 -1 ∈ ℤ
688isershft 15303 . . . . . 6 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))))))
6966, 67, 68mp2an 688 . . . . 5 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
7065, 69sylib 217 . . . 4 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
71 seqex 13651 . . . . 5 seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ V
72 fvex 6769 . . . . 5 ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ∈ V
7371, 72breldm 5806 . . . 4 (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
7470, 73syl 17 . . 3 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
75 eqid 2738 . . . 4 (ℤ‘(0 + -1)) = (ℤ‘(0 + -1))
76 neg1cn 12017 . . . . . . . 8 -1 ∈ ℂ
7776addid2i 11093 . . . . . . 7 (0 + -1) = -1
78 0le1 11428 . . . . . . . 8 0 ≤ 1
79 1re 10906 . . . . . . . . 9 1 ∈ ℝ
80 le0neg2 11414 . . . . . . . . 9 (1 ∈ ℝ → (0 ≤ 1 ↔ -1 ≤ 0))
8179, 80ax-mp 5 . . . . . . . 8 (0 ≤ 1 ↔ -1 ≤ 0)
8278, 81mpbi 229 . . . . . . 7 -1 ≤ 0
8377, 82eqbrtri 5091 . . . . . 6 (0 + -1) ≤ 0
8477, 67eqeltri 2835 . . . . . . 7 (0 + -1) ∈ ℤ
8584eluz1i 12519 . . . . . 6 (0 ∈ (ℤ‘(0 + -1)) ↔ (0 ∈ ℤ ∧ (0 + -1) ≤ 0))
8666, 83, 85mpbir2an 707 . . . . 5 0 ∈ (ℤ‘(0 + -1))
8786a1i 11 . . . 4 (𝜑 → 0 ∈ (ℤ‘(0 + -1)))
88 eluzelcn 12523 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → 𝑘 ∈ ℂ)
8988adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → 𝑘 ∈ ℂ)
904, 89, 9sylancr 586 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
91 nn0re 12172 . . . . . . . . . 10 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
9291adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
9324, 32, 23psergf 25476 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
9493ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝐺𝑋)‘𝑖) ∈ ℂ)
9594abscld 15076 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑖)) ∈ ℝ)
9692, 95remulcld 10936 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℝ)
9796recnd 10934 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℂ)
9897fmpttd 6971 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ)
994, 88, 11sylancr 586 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) = (𝑘 + 1))
100 eluzp1p1 12539 . . . . . . . 8 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ (ℤ‘((0 + -1) + 1)))
10177oveq1i 7265 . . . . . . . . . . 11 ((0 + -1) + 1) = (-1 + 1)
102 1pneg1e0 12022 . . . . . . . . . . . 12 (1 + -1) = 0
1034, 76, 102addcomli 11097 . . . . . . . . . . 11 (-1 + 1) = 0
104101, 103eqtri 2766 . . . . . . . . . 10 ((0 + -1) + 1) = 0
105104fveq2i 6759 . . . . . . . . 9 (ℤ‘((0 + -1) + 1)) = (ℤ‘0)
1061, 105eqtr4i 2769 . . . . . . . 8 0 = (ℤ‘((0 + -1) + 1))
107100, 106eleqtrrdi 2850 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ ℕ0)
10899, 107eqeltrd 2839 . . . . . 6 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) ∈ ℕ0)
109 ffvelrn 6941 . . . . . 6 (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ ∧ (1 + 𝑘) ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11098, 108, 109syl2an 595 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11190, 110eqeltrd 2839 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℂ)
11275, 87, 111iserex 15296 . . 3 (𝜑 → (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ↔ seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ))
11374, 112mpbid 231 . 2 (𝜑 → seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
114 1red 10907 . . 3 ((𝜑𝑋 = 0) → 1 ∈ ℝ)
115 neqne 2950 . . . . 5 𝑋 = 0 → 𝑋 ≠ 0)
116 absrpcl 14928 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
11723, 115, 116syl2an 595 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 0) → (abs‘𝑋) ∈ ℝ+)
118117rprecred 12712 . . 3 ((𝜑 ∧ ¬ 𝑋 = 0) → (1 / (abs‘𝑋)) ∈ ℝ)
119114, 118ifclda 4491 . 2 (𝜑 → if(𝑋 = 0, 1, (1 / (abs‘𝑋))) ∈ ℝ)
120 oveq1 7262 . . . . 5 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
121120breq2d 5082 . . . 4 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
122 oveq1 7262 . . . . 5 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
123122breq2d 5082 . . . 4 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
124 elnnuz 12551 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
125 nnnn0 12170 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
126124, 125sylbir 234 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
12715nn0ge0d 12226 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝑘 + 1))
12837absge0d 15084 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
12931, 38, 127, 128mulge0d 11482 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
130126, 129sylan2 592 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
131130adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
132 oveq1 7262 . . . . . . . . 9 (𝑋 = 0 → (𝑋𝑘) = (0↑𝑘))
133 simpr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
134133, 124sylibr 233 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
1351340expd 13785 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘1)) → (0↑𝑘) = 0)
136132, 135sylan9eqr 2801 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (𝑋𝑘) = 0)
137136oveq2d 7271 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0))
13851mul01d 11104 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
139126, 138sylan2 592 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
140139adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
141137, 140eqtrd 2778 . . . . . 6 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = 0)
142141abs00bd 14931 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = 0)
14339recnd 10934 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℂ)
144143mulid2d 10924 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
145126, 144sylan2 592 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
146145adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
147131, 142, 1463brtr4d 5102 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
148 df-ne 2943 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
14954abscld 15076 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ∈ ℝ)
15050, 34, 53mulassd 10929 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
151150fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15234, 53mulcld 10926 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) ∈ ℂ)
15350, 152absmuld 15094 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15431, 127absidd 15062 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝑘 + 1)) = (𝑘 + 1))
155154oveq1d 7270 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
156151, 153, 1553eqtrd 2782 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
157149, 156eqled 11008 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
158157adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15923adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℂ)
160116rpreccld 12711 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
161159, 160sylan 579 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
162161rpcnd 12703 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℂ)
16350adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℂ)
16438adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
165164recnd 10934 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℂ)
166162, 163, 165mul12d 11114 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
16737adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
16823ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ)
169 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
170167, 168, 169absdivd 15095 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)))
17134adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
17236adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
173171, 172, 168, 169divassd 11716 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
1746adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑘 ∈ ℂ)
175 pncan 11157 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
176174, 4, 175sylancl 585 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) − 1) = 𝑘)
177176oveq2d 7271 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = (𝑋𝑘))
17815nn0zd 12353 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
179178adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℤ)
180168, 169, 179expm1d 13802 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = ((𝑋↑(𝑘 + 1)) / 𝑋))
181177, 180eqtr3d 2780 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋𝑘) = ((𝑋↑(𝑘 + 1)) / 𝑋))
182181oveq2d 7271 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
183173, 182eqtr4d 2781 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))
184183fveq2d 6760 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
18523abscld 15076 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑋) ∈ ℝ)
186185ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ)
187186recnd 10934 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℂ)
188159, 116sylan 579 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
189188rpne0d 12706 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ≠ 0)
190165, 187, 189divrec2d 11685 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
191170, 184, 1903eqtr3rd 2787 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
192191oveq2d 7271 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
193166, 192eqtrd 2778 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
194158, 193breqtrrd 5098 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
195126, 194sylanl2 677 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
196148, 195sylan2br 594 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
197121, 123, 147, 196ifbothda 4494 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
19849fveq2d 6760 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
199126, 198sylan2 592 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
20030oveq2d 7271 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
201126, 200sylan2 592 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
202197, 199, 2013brtr4d 5102 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)))
2031, 3, 40, 55, 113, 119, 202cvgcmpce 15458 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  +crp 12659  seqcseq 13649  cexp 13710   shift cshi 14705  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326
This theorem is referenced by:  pserdvlem2  25492  dvradcnv2  41854
  Copyright terms: Public domain W3C validator