MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvradcnv Structured version   Visualization version   GIF version

Theorem dvradcnv 25011
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dvradcnv.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv.h 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
dvradcnv.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv.x (𝜑𝑋 ∈ ℂ)
dvradcnv.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟   𝑛,𝑟,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12283 . 2 0 = (ℤ‘0)
2 1nn0 11916 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 ax-1cn 10597 . . . . 5 1 ∈ ℂ
5 nn0cn 11910 . . . . . 6 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
65adantl 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7 nn0ex 11906 . . . . . . 7 0 ∈ V
87mptex 6988 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) ∈ V
98shftval4 14438 . . . . 5 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
104, 6, 9sylancr 589 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
11 addcom 10828 . . . . . 6 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + 𝑘) = (𝑘 + 1))
124, 6, 11sylancr 589 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 + 𝑘) = (𝑘 + 1))
1312fveq2d 6676 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)))
14 peano2nn0 11940 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
1514adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
16 id 22 . . . . . . . 8 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
17 2fveq3 6677 . . . . . . . 8 (𝑖 = (𝑘 + 1) → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘(𝑘 + 1))))
1816, 17oveq12d 7176 . . . . . . 7 (𝑖 = (𝑘 + 1) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
19 eqid 2823 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))
20 ovex 7191 . . . . . . 7 ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) ∈ V
2118, 19, 20fvmpt 6770 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
2215, 21syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
23 dvradcnv.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
24 dvradcnv.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
2524pserval2 25001 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2623, 14, 25syl2an 597 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2726fveq2d 6676 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘(𝑘 + 1))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
2827oveq2d 7174 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
2922, 28eqtrd 2858 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3010, 13, 293eqtrd 2862 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3115nn0red 11959 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
32 dvradcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
33 ffvelrn 6851 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3432, 14, 33syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
35 expcl 13450 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3623, 14, 35syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3734, 36mulcld 10663 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
3837abscld 14798 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
3931, 38remulcld 10673 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℝ)
4030, 39eqeltrd 2915 . 2 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℝ)
41 oveq1 7165 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
4241fveq2d 6676 . . . . . . 7 (𝑛 = 𝑘 → (𝐴‘(𝑛 + 1)) = (𝐴‘(𝑘 + 1)))
4341, 42oveq12d 7176 . . . . . 6 (𝑛 = 𝑘 → ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
44 oveq2 7166 . . . . . 6 (𝑛 = 𝑘 → (𝑋𝑛) = (𝑋𝑘))
4543, 44oveq12d 7176 . . . . 5 (𝑛 = 𝑘 → (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
46 dvradcnv.h . . . . 5 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
47 ovex 7191 . . . . 5 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ V
4845, 46, 47fvmpt 6770 . . . 4 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
4948adantl 484 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
5015nn0cnd 11960 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
5150, 34mulcld 10663 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ)
52 expcl 13450 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5323, 52sylan 582 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5451, 53mulcld 10663 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ ℂ)
5549, 54eqeltrd 2915 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) ∈ ℂ)
56 dvradcnv.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
57 dvradcnv.l . . . . . . . 8 (𝜑 → (abs‘𝑋) < 𝑅)
58 id 22 . . . . . . . . . 10 (𝑖 = 𝑘𝑖 = 𝑘)
59 2fveq3 6677 . . . . . . . . . 10 (𝑖 = 𝑘 → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘𝑘)))
6058, 59oveq12d 7176 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6160cbvmptv 5171 . . . . . . . 8 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6224, 32, 56, 23, 57, 61radcnvlt1 25008 . . . . . . 7 (𝜑 → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
6362simpld 497 . . . . . 6 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ )
64 climdm 14913 . . . . . 6 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ↔ seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
6563, 64sylib 220 . . . . 5 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
66 0z 11995 . . . . . 6 0 ∈ ℤ
67 neg1z 12021 . . . . . 6 -1 ∈ ℤ
688isershft 15022 . . . . . 6 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))))))
6966, 67, 68mp2an 690 . . . . 5 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
7065, 69sylib 220 . . . 4 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
71 seqex 13374 . . . . 5 seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ V
72 fvex 6685 . . . . 5 ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ∈ V
7371, 72breldm 5779 . . . 4 (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
7470, 73syl 17 . . 3 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
75 eqid 2823 . . . 4 (ℤ‘(0 + -1)) = (ℤ‘(0 + -1))
76 neg1cn 11754 . . . . . . . 8 -1 ∈ ℂ
7776addid2i 10830 . . . . . . 7 (0 + -1) = -1
78 0le1 11165 . . . . . . . 8 0 ≤ 1
79 1re 10643 . . . . . . . . 9 1 ∈ ℝ
80 le0neg2 11151 . . . . . . . . 9 (1 ∈ ℝ → (0 ≤ 1 ↔ -1 ≤ 0))
8179, 80ax-mp 5 . . . . . . . 8 (0 ≤ 1 ↔ -1 ≤ 0)
8278, 81mpbi 232 . . . . . . 7 -1 ≤ 0
8377, 82eqbrtri 5089 . . . . . 6 (0 + -1) ≤ 0
8477, 67eqeltri 2911 . . . . . . 7 (0 + -1) ∈ ℤ
8584eluz1i 12254 . . . . . 6 (0 ∈ (ℤ‘(0 + -1)) ↔ (0 ∈ ℤ ∧ (0 + -1) ≤ 0))
8666, 83, 85mpbir2an 709 . . . . 5 0 ∈ (ℤ‘(0 + -1))
8786a1i 11 . . . 4 (𝜑 → 0 ∈ (ℤ‘(0 + -1)))
88 eluzelcn 12258 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → 𝑘 ∈ ℂ)
8988adantl 484 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → 𝑘 ∈ ℂ)
904, 89, 9sylancr 589 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
91 nn0re 11909 . . . . . . . . . 10 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
9291adantl 484 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
9324, 32, 23psergf 25002 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
9493ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝐺𝑋)‘𝑖) ∈ ℂ)
9594abscld 14798 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑖)) ∈ ℝ)
9692, 95remulcld 10673 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℝ)
9796recnd 10671 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℂ)
9897fmpttd 6881 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ)
994, 88, 11sylancr 589 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) = (𝑘 + 1))
100 eluzp1p1 12273 . . . . . . . 8 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ (ℤ‘((0 + -1) + 1)))
10177oveq1i 7168 . . . . . . . . . . 11 ((0 + -1) + 1) = (-1 + 1)
102 1pneg1e0 11759 . . . . . . . . . . . 12 (1 + -1) = 0
1034, 76, 102addcomli 10834 . . . . . . . . . . 11 (-1 + 1) = 0
104101, 103eqtri 2846 . . . . . . . . . 10 ((0 + -1) + 1) = 0
105104fveq2i 6675 . . . . . . . . 9 (ℤ‘((0 + -1) + 1)) = (ℤ‘0)
1061, 105eqtr4i 2849 . . . . . . . 8 0 = (ℤ‘((0 + -1) + 1))
107100, 106eleqtrrdi 2926 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ ℕ0)
10899, 107eqeltrd 2915 . . . . . 6 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) ∈ ℕ0)
109 ffvelrn 6851 . . . . . 6 (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ ∧ (1 + 𝑘) ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11098, 108, 109syl2an 597 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11190, 110eqeltrd 2915 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℂ)
11275, 87, 111iserex 15015 . . 3 (𝜑 → (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ↔ seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ))
11374, 112mpbid 234 . 2 (𝜑 → seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
114 1red 10644 . . 3 ((𝜑𝑋 = 0) → 1 ∈ ℝ)
115 neqne 3026 . . . . 5 𝑋 = 0 → 𝑋 ≠ 0)
116 absrpcl 14650 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
11723, 115, 116syl2an 597 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 0) → (abs‘𝑋) ∈ ℝ+)
118117rprecred 12445 . . 3 ((𝜑 ∧ ¬ 𝑋 = 0) → (1 / (abs‘𝑋)) ∈ ℝ)
119114, 118ifclda 4503 . 2 (𝜑 → if(𝑋 = 0, 1, (1 / (abs‘𝑋))) ∈ ℝ)
120 oveq1 7165 . . . . 5 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
121120breq2d 5080 . . . 4 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
122 oveq1 7165 . . . . 5 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
123122breq2d 5080 . . . 4 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
124 elnnuz 12285 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
125 nnnn0 11907 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
126124, 125sylbir 237 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
12715nn0ge0d 11961 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝑘 + 1))
12837absge0d 14806 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
12931, 38, 127, 128mulge0d 11219 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
130126, 129sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
131130adantr 483 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
132 oveq1 7165 . . . . . . . . 9 (𝑋 = 0 → (𝑋𝑘) = (0↑𝑘))
133 simpr 487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
134133, 124sylibr 236 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
1351340expd 13506 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘1)) → (0↑𝑘) = 0)
136132, 135sylan9eqr 2880 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (𝑋𝑘) = 0)
137136oveq2d 7174 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0))
13851mul01d 10841 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
139126, 138sylan2 594 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
140139adantr 483 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
141137, 140eqtrd 2858 . . . . . 6 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = 0)
142141abs00bd 14653 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = 0)
14339recnd 10671 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℂ)
144143mulid2d 10661 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
145126, 144sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
146145adantr 483 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
147131, 142, 1463brtr4d 5100 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
148 df-ne 3019 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
14954abscld 14798 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ∈ ℝ)
15050, 34, 53mulassd 10666 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
151150fveq2d 6676 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15234, 53mulcld 10663 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) ∈ ℂ)
15350, 152absmuld 14816 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15431, 127absidd 14784 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝑘 + 1)) = (𝑘 + 1))
155154oveq1d 7173 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
156151, 153, 1553eqtrd 2862 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
157149, 156eqled 10745 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
158157adantr 483 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15923adantr 483 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℂ)
160116rpreccld 12444 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
161159, 160sylan 582 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
162161rpcnd 12436 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℂ)
16350adantr 483 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℂ)
16438adantr 483 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
165164recnd 10671 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℂ)
166162, 163, 165mul12d 10851 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
16737adantr 483 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
16823ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ)
169 simpr 487 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
170167, 168, 169absdivd 14817 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)))
17134adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
17236adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
173171, 172, 168, 169divassd 11453 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
1746adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑘 ∈ ℂ)
175 pncan 10894 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
176174, 4, 175sylancl 588 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) − 1) = 𝑘)
177176oveq2d 7174 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = (𝑋𝑘))
17815nn0zd 12088 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
179178adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℤ)
180168, 169, 179expm1d 13523 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = ((𝑋↑(𝑘 + 1)) / 𝑋))
181177, 180eqtr3d 2860 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋𝑘) = ((𝑋↑(𝑘 + 1)) / 𝑋))
182181oveq2d 7174 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
183173, 182eqtr4d 2861 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))
184183fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
18523abscld 14798 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑋) ∈ ℝ)
186185ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ)
187186recnd 10671 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℂ)
188159, 116sylan 582 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
189188rpne0d 12439 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ≠ 0)
190165, 187, 189divrec2d 11422 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
191170, 184, 1903eqtr3rd 2867 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
192191oveq2d 7174 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
193166, 192eqtrd 2858 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
194158, 193breqtrrd 5096 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
195126, 194sylanl2 679 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
196148, 195sylan2br 596 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
197121, 123, 147, 196ifbothda 4506 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
19849fveq2d 6676 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
199126, 198sylan2 594 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
20030oveq2d 7174 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
201126, 200sylan2 594 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
202197, 199, 2013brtr4d 5100 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)))
2031, 3, 40, 55, 113, 119, 202cvgcmpce 15175 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  {crab 3144  ifcif 4469   class class class wbr 5068  cmpt 5148  dom cdm 5557  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  cuz 12246  +crp 12392  seqcseq 13372  cexp 13432   shift cshi 14427  abscabs 14595  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045
This theorem is referenced by:  pserdvlem2  25018  dvradcnv2  40686
  Copyright terms: Public domain W3C validator