MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvradcnv Structured version   Visualization version   GIF version

Theorem dvradcnv 24995
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dvradcnv.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv.h 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
dvradcnv.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv.x (𝜑𝑋 ∈ ℂ)
dvradcnv.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟   𝑛,𝑟,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12259 . 2 0 = (ℤ‘0)
2 1nn0 11892 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 ax-1cn 10573 . . . . 5 1 ∈ ℂ
5 nn0cn 11886 . . . . . 6 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
65adantl 484 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7 nn0ex 11882 . . . . . . 7 0 ∈ V
87mptex 6962 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) ∈ V
98shftval4 14416 . . . . 5 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
104, 6, 9sylancr 589 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
11 addcom 10804 . . . . . 6 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + 𝑘) = (𝑘 + 1))
124, 6, 11sylancr 589 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 + 𝑘) = (𝑘 + 1))
1312fveq2d 6650 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)))
14 peano2nn0 11916 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
1514adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
16 id 22 . . . . . . . 8 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
17 2fveq3 6651 . . . . . . . 8 (𝑖 = (𝑘 + 1) → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘(𝑘 + 1))))
1816, 17oveq12d 7151 . . . . . . 7 (𝑖 = (𝑘 + 1) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
19 eqid 2820 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))
20 ovex 7166 . . . . . . 7 ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) ∈ V
2118, 19, 20fvmpt 6744 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
2215, 21syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
23 dvradcnv.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
24 dvradcnv.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
2524pserval2 24985 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2623, 14, 25syl2an 597 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2726fveq2d 6650 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘(𝑘 + 1))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
2827oveq2d 7149 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
2922, 28eqtrd 2855 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3010, 13, 293eqtrd 2859 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3115nn0red 11935 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
32 dvradcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
33 ffvelrn 6825 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3432, 14, 33syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
35 expcl 13432 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3623, 14, 35syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3734, 36mulcld 10639 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
3837abscld 14776 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
3931, 38remulcld 10649 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℝ)
4030, 39eqeltrd 2911 . 2 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℝ)
41 oveq1 7140 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
4241fveq2d 6650 . . . . . . 7 (𝑛 = 𝑘 → (𝐴‘(𝑛 + 1)) = (𝐴‘(𝑘 + 1)))
4341, 42oveq12d 7151 . . . . . 6 (𝑛 = 𝑘 → ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
44 oveq2 7141 . . . . . 6 (𝑛 = 𝑘 → (𝑋𝑛) = (𝑋𝑘))
4543, 44oveq12d 7151 . . . . 5 (𝑛 = 𝑘 → (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
46 dvradcnv.h . . . . 5 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
47 ovex 7166 . . . . 5 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ V
4845, 46, 47fvmpt 6744 . . . 4 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
4948adantl 484 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
5015nn0cnd 11936 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
5150, 34mulcld 10639 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ)
52 expcl 13432 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5323, 52sylan 582 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5451, 53mulcld 10639 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ ℂ)
5549, 54eqeltrd 2911 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) ∈ ℂ)
56 dvradcnv.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
57 dvradcnv.l . . . . . . . 8 (𝜑 → (abs‘𝑋) < 𝑅)
58 id 22 . . . . . . . . . 10 (𝑖 = 𝑘𝑖 = 𝑘)
59 2fveq3 6651 . . . . . . . . . 10 (𝑖 = 𝑘 → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘𝑘)))
6058, 59oveq12d 7151 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6160cbvmptv 5145 . . . . . . . 8 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6224, 32, 56, 23, 57, 61radcnvlt1 24992 . . . . . . 7 (𝜑 → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
6362simpld 497 . . . . . 6 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ )
64 climdm 14891 . . . . . 6 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ↔ seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
6563, 64sylib 220 . . . . 5 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
66 0z 11971 . . . . . 6 0 ∈ ℤ
67 neg1z 11997 . . . . . 6 -1 ∈ ℤ
688isershft 15000 . . . . . 6 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))))))
6966, 67, 68mp2an 690 . . . . 5 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
7065, 69sylib 220 . . . 4 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
71 seqex 13355 . . . . 5 seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ V
72 fvex 6659 . . . . 5 ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ∈ V
7371, 72breldm 5753 . . . 4 (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
7470, 73syl 17 . . 3 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
75 eqid 2820 . . . 4 (ℤ‘(0 + -1)) = (ℤ‘(0 + -1))
76 neg1cn 11730 . . . . . . . 8 -1 ∈ ℂ
7776addid2i 10806 . . . . . . 7 (0 + -1) = -1
78 0le1 11141 . . . . . . . 8 0 ≤ 1
79 1re 10619 . . . . . . . . 9 1 ∈ ℝ
80 le0neg2 11127 . . . . . . . . 9 (1 ∈ ℝ → (0 ≤ 1 ↔ -1 ≤ 0))
8179, 80ax-mp 5 . . . . . . . 8 (0 ≤ 1 ↔ -1 ≤ 0)
8278, 81mpbi 232 . . . . . . 7 -1 ≤ 0
8377, 82eqbrtri 5063 . . . . . 6 (0 + -1) ≤ 0
8477, 67eqeltri 2907 . . . . . . 7 (0 + -1) ∈ ℤ
8584eluz1i 12230 . . . . . 6 (0 ∈ (ℤ‘(0 + -1)) ↔ (0 ∈ ℤ ∧ (0 + -1) ≤ 0))
8666, 83, 85mpbir2an 709 . . . . 5 0 ∈ (ℤ‘(0 + -1))
8786a1i 11 . . . 4 (𝜑 → 0 ∈ (ℤ‘(0 + -1)))
88 eluzelcn 12234 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → 𝑘 ∈ ℂ)
8988adantl 484 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → 𝑘 ∈ ℂ)
904, 89, 9sylancr 589 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
91 nn0re 11885 . . . . . . . . . 10 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
9291adantl 484 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
9324, 32, 23psergf 24986 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
9493ffvelrnda 6827 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝐺𝑋)‘𝑖) ∈ ℂ)
9594abscld 14776 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑖)) ∈ ℝ)
9692, 95remulcld 10649 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℝ)
9796recnd 10647 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℂ)
9897fmpttd 6855 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ)
994, 88, 11sylancr 589 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) = (𝑘 + 1))
100 eluzp1p1 12249 . . . . . . . 8 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ (ℤ‘((0 + -1) + 1)))
10177oveq1i 7143 . . . . . . . . . . 11 ((0 + -1) + 1) = (-1 + 1)
102 1pneg1e0 11735 . . . . . . . . . . . 12 (1 + -1) = 0
1034, 76, 102addcomli 10810 . . . . . . . . . . 11 (-1 + 1) = 0
104101, 103eqtri 2843 . . . . . . . . . 10 ((0 + -1) + 1) = 0
105104fveq2i 6649 . . . . . . . . 9 (ℤ‘((0 + -1) + 1)) = (ℤ‘0)
1061, 105eqtr4i 2846 . . . . . . . 8 0 = (ℤ‘((0 + -1) + 1))
107100, 106eleqtrrdi 2922 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ ℕ0)
10899, 107eqeltrd 2911 . . . . . 6 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) ∈ ℕ0)
109 ffvelrn 6825 . . . . . 6 (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ ∧ (1 + 𝑘) ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11098, 108, 109syl2an 597 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11190, 110eqeltrd 2911 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℂ)
11275, 87, 111iserex 14993 . . 3 (𝜑 → (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ↔ seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ))
11374, 112mpbid 234 . 2 (𝜑 → seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
114 1red 10620 . . 3 ((𝜑𝑋 = 0) → 1 ∈ ℝ)
115 neqne 3014 . . . . 5 𝑋 = 0 → 𝑋 ≠ 0)
116 absrpcl 14628 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
11723, 115, 116syl2an 597 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 0) → (abs‘𝑋) ∈ ℝ+)
118117rprecred 12421 . . 3 ((𝜑 ∧ ¬ 𝑋 = 0) → (1 / (abs‘𝑋)) ∈ ℝ)
119114, 118ifclda 4477 . 2 (𝜑 → if(𝑋 = 0, 1, (1 / (abs‘𝑋))) ∈ ℝ)
120 oveq1 7140 . . . . 5 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
121120breq2d 5054 . . . 4 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
122 oveq1 7140 . . . . 5 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
123122breq2d 5054 . . . 4 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
124 elnnuz 12261 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
125 nnnn0 11883 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
126124, 125sylbir 237 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
12715nn0ge0d 11937 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝑘 + 1))
12837absge0d 14784 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
12931, 38, 127, 128mulge0d 11195 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
130126, 129sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
131130adantr 483 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
132 oveq1 7140 . . . . . . . . 9 (𝑋 = 0 → (𝑋𝑘) = (0↑𝑘))
133 simpr 487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
134133, 124sylibr 236 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
1351340expd 13488 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘1)) → (0↑𝑘) = 0)
136132, 135sylan9eqr 2877 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (𝑋𝑘) = 0)
137136oveq2d 7149 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0))
13851mul01d 10817 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
139126, 138sylan2 594 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
140139adantr 483 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
141137, 140eqtrd 2855 . . . . . 6 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = 0)
142141abs00bd 14631 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = 0)
14339recnd 10647 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℂ)
144143mulid2d 10637 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
145126, 144sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
146145adantr 483 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
147131, 142, 1463brtr4d 5074 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
148 df-ne 3007 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
14954abscld 14776 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ∈ ℝ)
15050, 34, 53mulassd 10642 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
151150fveq2d 6650 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15234, 53mulcld 10639 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) ∈ ℂ)
15350, 152absmuld 14794 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15431, 127absidd 14762 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝑘 + 1)) = (𝑘 + 1))
155154oveq1d 7148 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
156151, 153, 1553eqtrd 2859 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
157149, 156eqled 10721 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
158157adantr 483 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15923adantr 483 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℂ)
160116rpreccld 12420 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
161159, 160sylan 582 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
162161rpcnd 12412 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℂ)
16350adantr 483 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℂ)
16438adantr 483 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
165164recnd 10647 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℂ)
166162, 163, 165mul12d 10827 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
16737adantr 483 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
16823ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ)
169 simpr 487 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
170167, 168, 169absdivd 14795 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)))
17134adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
17236adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
173171, 172, 168, 169divassd 11429 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
1746adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑘 ∈ ℂ)
175 pncan 10870 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
176174, 4, 175sylancl 588 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) − 1) = 𝑘)
177176oveq2d 7149 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = (𝑋𝑘))
17815nn0zd 12064 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
179178adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℤ)
180168, 169, 179expm1d 13505 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = ((𝑋↑(𝑘 + 1)) / 𝑋))
181177, 180eqtr3d 2857 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋𝑘) = ((𝑋↑(𝑘 + 1)) / 𝑋))
182181oveq2d 7149 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
183173, 182eqtr4d 2858 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))
184183fveq2d 6650 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
18523abscld 14776 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑋) ∈ ℝ)
186185ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ)
187186recnd 10647 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℂ)
188159, 116sylan 582 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
189188rpne0d 12415 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ≠ 0)
190165, 187, 189divrec2d 11398 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
191170, 184, 1903eqtr3rd 2864 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
192191oveq2d 7149 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
193166, 192eqtrd 2855 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
194158, 193breqtrrd 5070 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
195126, 194sylanl2 679 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
196148, 195sylan2br 596 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
197121, 123, 147, 196ifbothda 4480 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
19849fveq2d 6650 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
199126, 198sylan2 594 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
20030oveq2d 7149 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
201126, 200sylan2 594 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
202197, 199, 2013brtr4d 5074 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)))
2031, 3, 40, 55, 113, 119, 202cvgcmpce 15153 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006  {crab 3129  ifcif 4443   class class class wbr 5042  cmpt 5122  dom cdm 5531  ccom 5535  wf 6327  cfv 6331  (class class class)co 7133  supcsup 8882  cc 10513  cr 10514  0cc0 10515  1c1 10516   + caddc 10518   · cmul 10520  *cxr 10652   < clt 10653  cle 10654  cmin 10848  -cneg 10849   / cdiv 11275  cn 11616  0cn0 11876  cz 11960  cuz 12222  +crp 12368  seqcseq 13353  cexp 13414   shift cshi 14405  abscabs 14573  cli 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-pm 8387  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-inf 8885  df-oi 8952  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-ico 12723  df-icc 12724  df-fz 12877  df-fzo 13018  df-fl 13146  df-seq 13354  df-exp 13415  df-hash 13676  df-shft 14406  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-limsup 14808  df-clim 14825  df-rlim 14826  df-sum 15023
This theorem is referenced by:  pserdvlem2  25002  dvradcnv2  40834
  Copyright terms: Public domain W3C validator