MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvradcnv Structured version   Visualization version   GIF version

Theorem dvradcnv 26328
Description: The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dvradcnv.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
dvradcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
dvradcnv.h 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
dvradcnv.a (𝜑𝐴:ℕ0⟶ℂ)
dvradcnv.x (𝜑𝑋 ∈ ℂ)
dvradcnv.l (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
dvradcnv (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟   𝑛,𝑟,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)

Proof of Theorem dvradcnv
Dummy variables 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12777 . 2 0 = (ℤ‘0)
2 1nn0 12400 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 ax-1cn 11067 . . . . 5 1 ∈ ℂ
5 nn0cn 12394 . . . . . 6 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
65adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7 nn0ex 12390 . . . . . . 7 0 ∈ V
87mptex 7159 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) ∈ V
98shftval4 14984 . . . . 5 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
104, 6, 9sylancr 587 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
11 addcom 11302 . . . . . 6 ((1 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + 𝑘) = (𝑘 + 1))
124, 6, 11sylancr 587 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 + 𝑘) = (𝑘 + 1))
1312fveq2d 6826 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)))
14 peano2nn0 12424 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
1514adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
16 id 22 . . . . . . . 8 (𝑖 = (𝑘 + 1) → 𝑖 = (𝑘 + 1))
17 2fveq3 6827 . . . . . . . 8 (𝑖 = (𝑘 + 1) → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘(𝑘 + 1))))
1816, 17oveq12d 7367 . . . . . . 7 (𝑖 = (𝑘 + 1) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
19 eqid 2729 . . . . . . 7 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))
20 ovex 7382 . . . . . . 7 ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) ∈ V
2118, 19, 20fvmpt 6930 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
2215, 21syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))))
23 dvradcnv.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
24 dvradcnv.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
2524pserval2 26318 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2623, 14, 25syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))
2726fveq2d 6826 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘(𝑘 + 1))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
2827oveq2d 7365 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐺𝑋)‘(𝑘 + 1)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
2922, 28eqtrd 2764 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(𝑘 + 1)) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3010, 13, 293eqtrd 2768 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
3115nn0red 12446 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
32 dvradcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
33 ffvelcdm 7015 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3432, 14, 33syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
35 expcl 13986 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3623, 14, 35syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
3734, 36mulcld 11135 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
3837abscld 15346 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
3931, 38remulcld 11145 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℝ)
4030, 39eqeltrd 2828 . 2 ((𝜑𝑘 ∈ ℕ0) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℝ)
41 oveq1 7356 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
4241fveq2d 6826 . . . . . . 7 (𝑛 = 𝑘 → (𝐴‘(𝑛 + 1)) = (𝐴‘(𝑘 + 1)))
4341, 42oveq12d 7367 . . . . . 6 (𝑛 = 𝑘 → ((𝑛 + 1) · (𝐴‘(𝑛 + 1))) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
44 oveq2 7357 . . . . . 6 (𝑛 = 𝑘 → (𝑋𝑛) = (𝑋𝑘))
4543, 44oveq12d 7367 . . . . 5 (𝑛 = 𝑘 → (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
46 dvradcnv.h . . . . 5 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋𝑛)))
47 ovex 7382 . . . . 5 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ V
4845, 46, 47fvmpt 6930 . . . 4 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
4948adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)))
5015nn0cnd 12447 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
5150, 34mulcld 11135 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ ℂ)
52 expcl 13986 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5323, 52sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑋𝑘) ∈ ℂ)
5451, 53mulcld 11135 . . 3 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) ∈ ℂ)
5549, 54eqeltrd 2828 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) ∈ ℂ)
56 dvradcnv.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
57 dvradcnv.l . . . . . . . 8 (𝜑 → (abs‘𝑋) < 𝑅)
58 id 22 . . . . . . . . . 10 (𝑖 = 𝑘𝑖 = 𝑘)
59 2fveq3 6827 . . . . . . . . . 10 (𝑖 = 𝑘 → (abs‘((𝐺𝑋)‘𝑖)) = (abs‘((𝐺𝑋)‘𝑘)))
6058, 59oveq12d 7367 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6160cbvmptv 5196 . . . . . . . 8 (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
6224, 32, 56, 23, 57, 61radcnvlt1 26325 . . . . . . 7 (𝜑 → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
6362simpld 494 . . . . . 6 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ )
64 climdm 15461 . . . . . 6 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ∈ dom ⇝ ↔ seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
6563, 64sylib 218 . . . . 5 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
66 0z 12482 . . . . . 6 0 ∈ ℤ
67 neg1z 12511 . . . . . 6 -1 ∈ ℤ
688isershft 15571 . . . . . 6 ((0 ∈ ℤ ∧ -1 ∈ ℤ) → (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))))))
6966, 67, 68mp2an 692 . . . . 5 (seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ↔ seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
7065, 69sylib 218 . . . 4 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))))
71 seqex 13910 . . . . 5 seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ V
72 fvex 6835 . . . . 5 ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) ∈ V
7371, 72breldm 5851 . . . 4 (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ⇝ ( ⇝ ‘seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))))) → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
7470, 73syl 17 . . 3 (𝜑 → seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
75 eqid 2729 . . . 4 (ℤ‘(0 + -1)) = (ℤ‘(0 + -1))
76 neg1cn 12113 . . . . . . . 8 -1 ∈ ℂ
7776addlidi 11304 . . . . . . 7 (0 + -1) = -1
78 0le1 11643 . . . . . . . 8 0 ≤ 1
79 1re 11115 . . . . . . . . 9 1 ∈ ℝ
80 le0neg2 11629 . . . . . . . . 9 (1 ∈ ℝ → (0 ≤ 1 ↔ -1 ≤ 0))
8179, 80ax-mp 5 . . . . . . . 8 (0 ≤ 1 ↔ -1 ≤ 0)
8278, 81mpbi 230 . . . . . . 7 -1 ≤ 0
8377, 82eqbrtri 5113 . . . . . 6 (0 + -1) ≤ 0
8477, 67eqeltri 2824 . . . . . . 7 (0 + -1) ∈ ℤ
8584eluz1i 12743 . . . . . 6 (0 ∈ (ℤ‘(0 + -1)) ↔ (0 ∈ ℤ ∧ (0 + -1) ≤ 0))
8666, 83, 85mpbir2an 711 . . . . 5 0 ∈ (ℤ‘(0 + -1))
8786a1i 11 . . . 4 (𝜑 → 0 ∈ (ℤ‘(0 + -1)))
88 eluzelcn 12747 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → 𝑘 ∈ ℂ)
8988adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → 𝑘 ∈ ℂ)
904, 89, 9sylancr 587 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) = ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)))
91 nn0re 12393 . . . . . . . . . 10 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
9291adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
9324, 32, 23psergf 26319 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
9493ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝐺𝑋)‘𝑖) ∈ ℂ)
9594abscld 15346 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑖)) ∈ ℝ)
9692, 95remulcld 11145 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℝ)
9796recnd 11143 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑖 · (abs‘((𝐺𝑋)‘𝑖))) ∈ ℂ)
9897fmpttd 7049 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ)
994, 88, 11sylancr 587 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) = (𝑘 + 1))
100 eluzp1p1 12763 . . . . . . . 8 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ (ℤ‘((0 + -1) + 1)))
10177oveq1i 7359 . . . . . . . . . . 11 ((0 + -1) + 1) = (-1 + 1)
102 1pneg1e0 12242 . . . . . . . . . . . 12 (1 + -1) = 0
1034, 76, 102addcomli 11308 . . . . . . . . . . 11 (-1 + 1) = 0
104101, 103eqtri 2752 . . . . . . . . . 10 ((0 + -1) + 1) = 0
105104fveq2i 6825 . . . . . . . . 9 (ℤ‘((0 + -1) + 1)) = (ℤ‘0)
1061, 105eqtr4i 2755 . . . . . . . 8 0 = (ℤ‘((0 + -1) + 1))
107100, 106eleqtrrdi 2839 . . . . . . 7 (𝑘 ∈ (ℤ‘(0 + -1)) → (𝑘 + 1) ∈ ℕ0)
10899, 107eqeltrd 2828 . . . . . 6 (𝑘 ∈ (ℤ‘(0 + -1)) → (1 + 𝑘) ∈ ℕ0)
109 ffvelcdm 7015 . . . . . 6 (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))):ℕ0⟶ℂ ∧ (1 + 𝑘) ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11098, 108, 109syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖))))‘(1 + 𝑘)) ∈ ℂ)
11190, 110eqeltrd 2828 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(0 + -1))) → (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘) ∈ ℂ)
11275, 87, 111iserex 15564 . . 3 (𝜑 → (seq(0 + -1)( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ↔ seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ ))
11374, 112mpbid 232 . 2 (𝜑 → seq0( + , ((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)) ∈ dom ⇝ )
114 1red 11116 . . 3 ((𝜑𝑋 = 0) → 1 ∈ ℝ)
115 neqne 2933 . . . . 5 𝑋 = 0 → 𝑋 ≠ 0)
116 absrpcl 15195 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
11723, 115, 116syl2an 596 . . . 4 ((𝜑 ∧ ¬ 𝑋 = 0) → (abs‘𝑋) ∈ ℝ+)
118117rprecred 12948 . . 3 ((𝜑 ∧ ¬ 𝑋 = 0) → (1 / (abs‘𝑋)) ∈ ℝ)
119114, 118ifclda 4512 . 2 (𝜑 → if(𝑋 = 0, 1, (1 / (abs‘𝑋))) ∈ ℝ)
120 oveq1 7356 . . . . 5 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
121120breq2d 5104 . . . 4 (1 = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
122 oveq1 7356 . . . . 5 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
123122breq2d 5104 . . . 4 ((1 / (abs‘𝑋)) = if(𝑋 = 0, 1, (1 / (abs‘𝑋))) → ((abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) ↔ (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))))
124 elnnuz 12779 . . . . . . . 8 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
125 nnnn0 12391 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
126124, 125sylbir 235 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
12715nn0ge0d 12448 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝑘 + 1))
12837absge0d 15354 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))
12931, 38, 127, 128mulge0d 11697 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
130126, 129sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
131130adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → 0 ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
132 oveq1 7356 . . . . . . . . 9 (𝑋 = 0 → (𝑋𝑘) = (0↑𝑘))
133 simpr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
134133, 124sylibr 234 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
1351340expd 14046 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘1)) → (0↑𝑘) = 0)
136132, 135sylan9eqr 2786 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (𝑋𝑘) = 0)
137136oveq2d 7365 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0))
13851mul01d 11315 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
139126, 138sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
140139adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · 0) = 0)
141137, 140eqtrd 2764 . . . . . 6 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = 0)
142141abs00bd 15198 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = 0)
14339recnd 11143 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) ∈ ℂ)
144143mullidd 11133 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
145126, 144sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
146145adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
147131, 142, 1463brtr4d 5124 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (1 · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
148 df-ne 2926 . . . . 5 (𝑋 ≠ 0 ↔ ¬ 𝑋 = 0)
14954abscld 15346 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ∈ ℝ)
15050, 34, 53mulassd 11138 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘)) = ((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
151150fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15234, 53mulcld 11135 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) ∈ ℂ)
15350, 152absmuld 15364 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝑘 + 1) · ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15431, 127absidd 15330 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝑘 + 1)) = (𝑘 + 1))
155154oveq1d 7364 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((abs‘(𝑘 + 1)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
156151, 153, 1553eqtrd 2768 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
157149, 156eqled 11219 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
158157adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
15923adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑋 ∈ ℂ)
160116rpreccld 12947 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
161159, 160sylan 580 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℝ+)
162161rpcnd 12939 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (1 / (abs‘𝑋)) ∈ ℂ)
16350adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℂ)
16438adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℝ)
165164recnd 11143 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) ∈ ℂ)
166162, 163, 165mul12d 11325 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
16737adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) ∈ ℂ)
16823ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ∈ ℂ)
169 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
170167, 168, 169absdivd 15365 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)))
17134adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
17236adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑(𝑘 + 1)) ∈ ℂ)
173171, 172, 168, 169divassd 11935 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
1746adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → 𝑘 ∈ ℂ)
175 pncan 11369 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
176174, 4, 175sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) − 1) = 𝑘)
177176oveq2d 7365 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = (𝑋𝑘))
17815nn0zd 12497 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
179178adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑘 + 1) ∈ ℤ)
180168, 169, 179expm1d 14063 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋↑((𝑘 + 1) − 1)) = ((𝑋↑(𝑘 + 1)) / 𝑋))
181177, 180eqtr3d 2766 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (𝑋𝑘) = ((𝑋↑(𝑘 + 1)) / 𝑋))
182181oveq2d 7365 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)) = ((𝐴‘(𝑘 + 1)) · ((𝑋↑(𝑘 + 1)) / 𝑋)))
183173, 182eqtr4d 2767 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋) = ((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))
184183fveq2d 6826 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))) / 𝑋)) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
18523abscld 15346 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝑋) ∈ ℝ)
186185ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ)
187186recnd 11143 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℂ)
188159, 116sylan 580 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ∈ ℝ+)
189188rpne0d 12942 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘𝑋) ≠ 0)
190165, 187, 189divrec2d 11904 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))) / (abs‘𝑋)) = ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))))
191170, 184, 1903eqtr3rd 2773 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1))))) = (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘))))
192191oveq2d 7365 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((𝑘 + 1) · ((1 / (abs‘𝑋)) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
193166, 192eqtrd 2764 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))) = ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋𝑘)))))
194158, 193breqtrrd 5120 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
195126, 194sylanl2 681 . . . . 5 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ 𝑋 ≠ 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
196148, 195sylan2br 595 . . . 4 (((𝜑𝑘 ∈ (ℤ‘1)) ∧ ¬ 𝑋 = 0) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ ((1 / (abs‘𝑋)) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
197121, 123, 147, 196ifbothda 4515 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
19849fveq2d 6826 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
199126, 198sylan2 593 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) = (abs‘(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑋𝑘))))
20030oveq2d 7365 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
201126, 200sylan2 593 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)) = (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · ((𝑘 + 1) · (abs‘((𝐴‘(𝑘 + 1)) · (𝑋↑(𝑘 + 1)))))))
202197, 199, 2013brtr4d 5124 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘(𝐻𝑘)) ≤ (if(𝑋 = 0, 1, (1 / (abs‘𝑋))) · (((𝑖 ∈ ℕ0 ↦ (𝑖 · (abs‘((𝐺𝑋)‘𝑖)))) shift -1)‘𝑘)))
2031, 3, 40, 55, 113, 119, 202cvgcmpce 15725 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3394  ifcif 4476   class class class wbr 5092  cmpt 5173  dom cdm 5619  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cuz 12735  +crp 12893  seqcseq 13908  cexp 13968   shift cshi 14973  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  pserdvlem2  26336  dvradcnv2  44340
  Copyright terms: Public domain W3C validator