MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsubdiv Structured version   Visualization version   GIF version

Theorem divsubdiv 11844
Description: Subtraction of two ratios. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
divsubdiv (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) − (𝐵 / 𝐷)) = (((𝐴 · 𝐷) − (𝐵 · 𝐶)) / (𝐶 · 𝐷)))

Proof of Theorem divsubdiv
StepHypRef Expression
1 negcl 11367 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 divadddiv 11843 . . . 4 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) + (-𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (-𝐵 · 𝐶)) / (𝐶 · 𝐷)))
31, 2sylanl2 681 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) + (-𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (-𝐵 · 𝐶)) / (𝐶 · 𝐷)))
4 simplr 768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐵 ∈ ℂ)
5 simprrl 780 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐷 ∈ ℂ)
6 simprrr 781 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐷 ≠ 0)
7 divneg 11820 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → -(𝐵 / 𝐷) = (-𝐵 / 𝐷))
84, 5, 6, 7syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → -(𝐵 / 𝐷) = (-𝐵 / 𝐷))
98oveq2d 7368 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) + -(𝐵 / 𝐷)) = ((𝐴 / 𝐶) + (-𝐵 / 𝐷)))
10 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐴 ∈ ℂ)
11 simprll 778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐶 ∈ ℂ)
12 simprlr 779 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐶 ≠ 0)
13 divcl 11789 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
1410, 11, 12, 13syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐴 / 𝐶) ∈ ℂ)
15 divcl 11789 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℂ)
164, 5, 6, 15syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐵 / 𝐷) ∈ ℂ)
1714, 16negsubd 11485 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) + -(𝐵 / 𝐷)) = ((𝐴 / 𝐶) − (𝐵 / 𝐷)))
189, 17eqtr3d 2770 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) + (-𝐵 / 𝐷)) = ((𝐴 / 𝐶) − (𝐵 / 𝐷)))
193, 18eqtr3d 2770 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐴 · 𝐷) + (-𝐵 · 𝐶)) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) − (𝐵 / 𝐷)))
204, 11mulneg1d 11577 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (-𝐵 · 𝐶) = -(𝐵 · 𝐶))
2120oveq2d 7368 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 · 𝐷) + (-𝐵 · 𝐶)) = ((𝐴 · 𝐷) + -(𝐵 · 𝐶)))
2210, 5mulcld 11139 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐴 · 𝐷) ∈ ℂ)
234, 11mulcld 11139 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐵 · 𝐶) ∈ ℂ)
2422, 23negsubd 11485 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 · 𝐷) + -(𝐵 · 𝐶)) = ((𝐴 · 𝐷) − (𝐵 · 𝐶)))
2521, 24eqtrd 2768 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 · 𝐷) + (-𝐵 · 𝐶)) = ((𝐴 · 𝐷) − (𝐵 · 𝐶)))
2625oveq1d 7367 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐴 · 𝐷) + (-𝐵 · 𝐶)) / (𝐶 · 𝐷)) = (((𝐴 · 𝐷) − (𝐵 · 𝐶)) / (𝐶 · 𝐷)))
2719, 26eqtr3d 2770 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) − (𝐵 / 𝐷)) = (((𝐴 · 𝐷) − (𝐵 · 𝐶)) / (𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7352  cc 11011  0cc0 11013   + caddc 11016   · cmul 11018  cmin 11351  -cneg 11352   / cdiv 11781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782
This theorem is referenced by:  divsubdivd  11949  rplogsumlem1  27423
  Copyright terms: Public domain W3C validator