MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbas2 Structured version   Visualization version   GIF version

Theorem mplbas2 21955
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mplbas2.p 𝑃 = (𝐼 mPoly 𝑅)
mplbas2.s 𝑆 = (𝐼 mPwSer 𝑅)
mplbas2.v 𝑉 = (𝐼 mVar 𝑅)
mplbas2.a 𝐴 = (AlgSpan‘𝑆)
mplbas2.i (𝜑𝐼𝑊)
mplbas2.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplbas2 (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃))

Proof of Theorem mplbas2
Dummy variables 𝑢 𝑘 𝑣 𝑥 𝑧 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplbas2.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 mplbas2.i . . . . 5 (𝜑𝐼𝑊)
3 mplbas2.r . . . . 5 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 21888 . . . 4 (𝜑𝑆 ∈ AssAlg)
5 mplbas2.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
6 eqid 2730 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
7 eqid 2730 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
85, 1, 6, 7mplbasss 21912 . . . . 5 (Base‘𝑃) ⊆ (Base‘𝑆)
98a1i 11 . . . 4 (𝜑 → (Base‘𝑃) ⊆ (Base‘𝑆))
10 mplbas2.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
11 crngring 20160 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
123, 11syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
131, 10, 7, 2, 12mvrf 21900 . . . . . . 7 (𝜑𝑉:𝐼⟶(Base‘𝑆))
1413ffnd 6691 . . . . . 6 (𝜑𝑉 Fn 𝐼)
152adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐼𝑊)
1612adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
17 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑥𝐼)
185, 10, 6, 15, 16, 17mvrcl 21907 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ (Base‘𝑃))
1918ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ (Base‘𝑃))
20 ffnfv 7093 . . . . . 6 (𝑉:𝐼⟶(Base‘𝑃) ↔ (𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ (Base‘𝑃)))
2114, 19, 20sylanbrc 583 . . . . 5 (𝜑𝑉:𝐼⟶(Base‘𝑃))
2221frnd 6698 . . . 4 (𝜑 → ran 𝑉 ⊆ (Base‘𝑃))
23 mplbas2.a . . . . 5 𝐴 = (AlgSpan‘𝑆)
2423, 7aspss 21792 . . . 4 ((𝑆 ∈ AssAlg ∧ (Base‘𝑃) ⊆ (Base‘𝑆) ∧ ran 𝑉 ⊆ (Base‘𝑃)) → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃)))
254, 9, 22, 24syl3anc 1373 . . 3 (𝜑 → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃)))
261, 5, 6, 2, 12mplsubrg 21920 . . . 4 (𝜑 → (Base‘𝑃) ∈ (SubRing‘𝑆))
271, 5, 6, 2, 12mpllss 21918 . . . 4 (𝜑 → (Base‘𝑃) ∈ (LSubSp‘𝑆))
28 eqid 2730 . . . . 5 (LSubSp‘𝑆) = (LSubSp‘𝑆)
2923, 7, 28aspid 21790 . . . 4 ((𝑆 ∈ AssAlg ∧ (Base‘𝑃) ∈ (SubRing‘𝑆) ∧ (Base‘𝑃) ∈ (LSubSp‘𝑆)) → (𝐴‘(Base‘𝑃)) = (Base‘𝑃))
304, 26, 27, 29syl3anc 1373 . . 3 (𝜑 → (𝐴‘(Base‘𝑃)) = (Base‘𝑃))
3125, 30sseqtrd 3985 . 2 (𝜑 → (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))
32 eqid 2730 . . . 4 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
33 eqid 2730 . . . 4 (0g𝑅) = (0g𝑅)
34 eqid 2730 . . . 4 (1r𝑅) = (1r𝑅)
352adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝐼𝑊)
36 eqid 2730 . . . 4 ( ·𝑠𝑃) = ( ·𝑠𝑃)
3712adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring)
38 simpr 484 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (Base‘𝑃))
395, 32, 33, 34, 35, 6, 36, 37, 38mplcoe1 21950 . . 3 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))))
40 eqid 2730 . . . 4 (0g𝑃) = (0g𝑃)
415, 2, 12mplringd 21938 . . . . . 6 (𝜑𝑃 ∈ Ring)
42 ringabl 20196 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
4341, 42syl 17 . . . . 5 (𝜑𝑃 ∈ Abel)
4443adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑃 ∈ Abel)
45 ovex 7422 . . . . . 6 (ℕ0m 𝐼) ∈ V
4645rabex 5296 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4746a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
4813frnd 6698 . . . . . . . 8 (𝜑 → ran 𝑉 ⊆ (Base‘𝑆))
4923, 7aspsubrg 21791 . . . . . . . 8 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆))
504, 48, 49syl2anc 584 . . . . . . 7 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆))
515, 1, 6mplval2 21911 . . . . . . . . 9 𝑃 = (𝑆s (Base‘𝑃))
5251subsubrg 20513 . . . . . . . 8 ((Base‘𝑃) ∈ (SubRing‘𝑆) → ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
5326, 52syl 17 . . . . . . 7 (𝜑 → ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
5450, 31, 53mpbir2and 713 . . . . . 6 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃))
55 subrgsubg 20492 . . . . . 6 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
5654, 55syl 17 . . . . 5 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
5756adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
585, 2, 12mpllmodd 21939 . . . . . . 7 (𝜑𝑃 ∈ LMod)
5958ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑃 ∈ LMod)
6023, 7, 28asplss 21789 . . . . . . . . 9 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆))
614, 48, 60syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆))
621, 2, 12psrlmod 21875 . . . . . . . . 9 (𝜑𝑆 ∈ LMod)
63 eqid 2730 . . . . . . . . . 10 (LSubSp‘𝑃) = (LSubSp‘𝑃)
6451, 28, 63lsslss 20873 . . . . . . . . 9 ((𝑆 ∈ LMod ∧ (Base‘𝑃) ∈ (LSubSp‘𝑆)) → ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
6562, 27, 64syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
6661, 31, 65mpbir2and 713 . . . . . . 7 (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃))
6766ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃))
68 eqid 2730 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
695, 68, 6, 32, 38mplelf 21913 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7069ffvelcdmda 7058 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥𝑘) ∈ (Base‘𝑅))
715, 35, 37mplsca 21928 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑅 = (Scalar‘𝑃))
7271adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 = (Scalar‘𝑃))
7372fveq2d 6864 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
7470, 73eleqtrd 2831 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥𝑘) ∈ (Base‘(Scalar‘𝑃)))
752ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐼𝑊)
76 eqid 2730 . . . . . . . 8 (mulGrp‘𝑃) = (mulGrp‘𝑃)
77 eqid 2730 . . . . . . . 8 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
783ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
79 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
805, 32, 33, 34, 75, 76, 77, 10, 78, 79mplcoe2 21954 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) = ((mulGrp‘𝑃) Σg (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))))
81 eqid 2730 . . . . . . . . 9 (1r𝑃) = (1r𝑃)
8276, 81ringidval 20098 . . . . . . . 8 (1r𝑃) = (0g‘(mulGrp‘𝑃))
835mplcrng 21936 . . . . . . . . . . 11 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ CRing)
842, 3, 83syl2anc 584 . . . . . . . . . 10 (𝜑𝑃 ∈ CRing)
8576crngmgp 20156 . . . . . . . . . 10 (𝑃 ∈ CRing → (mulGrp‘𝑃) ∈ CMnd)
8684, 85syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑃) ∈ CMnd)
8786ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (mulGrp‘𝑃) ∈ CMnd)
8854ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃))
8976subrgsubm 20500 . . . . . . . . 9 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃)))
9088, 89syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃)))
91 simplll 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → 𝜑)
9232psrbag 21832 . . . . . . . . . . . . . 14 (𝐼𝑊 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin)))
9335, 92syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin)))
9493biimpa 476 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin))
9594simpld 494 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
9695ffvelcdmda 7058 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
9723, 7aspssid 21793 . . . . . . . . . . . . 13 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
984, 48, 97syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
9998ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
10014ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑉 Fn 𝐼)
101 fnfvelrn 7054 . . . . . . . . . . . 12 ((𝑉 Fn 𝐼𝑧𝐼) → (𝑉𝑧) ∈ ran 𝑉)
102100, 101sylan 580 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑉𝑧) ∈ ran 𝑉)
10399, 102sseldd 3949 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑉𝑧) ∈ (𝐴‘ran 𝑉))
10476, 6mgpbas 20060 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
105 eqid 2730 . . . . . . . . . . . 12 (.r𝑃) = (.r𝑃)
10676, 105mgpplusg 20059 . . . . . . . . . . 11 (.r𝑃) = (+g‘(mulGrp‘𝑃))
107105subrgmcl 20499 . . . . . . . . . . . 12 (((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ∧ 𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r𝑃)𝑣) ∈ (𝐴‘ran 𝑉))
10854, 107syl3an1 1163 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r𝑃)𝑣) ∈ (𝐴‘ran 𝑉))
10981subrg1cl 20495 . . . . . . . . . . . 12 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (1r𝑃) ∈ (𝐴‘ran 𝑉))
11054, 109syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑃) ∈ (𝐴‘ran 𝑉))
111104, 77, 106, 86, 31, 108, 82, 110mulgnn0subcl 19025 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑧) ∈ ℕ0 ∧ (𝑉𝑧) ∈ (𝐴‘ran 𝑉)) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) ∈ (𝐴‘ran 𝑉))
11291, 96, 103, 111syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) ∈ (𝐴‘ran 𝑉))
113112fmpttd 7089 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))):𝐼⟶(𝐴‘ran 𝑉))
1142mptexd 7200 . . . . . . . . . 10 (𝜑 → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V)
115114ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V)
116 funmpt 6556 . . . . . . . . . 10 Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))
117116a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))))
118 fvexd 6875 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (1r𝑃) ∈ V)
11994simprd 495 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 “ ℕ) ∈ Fin)
120 elrabi 3656 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑘 ∈ (ℕ0m 𝐼))
121 elmapi 8824 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℕ0m 𝐼) → 𝑘:𝐼⟶ℕ0)
122121adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → 𝑘:𝐼⟶ℕ0)
1232ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → 𝐼𝑊)
124 fcdmnn0supp 12505 . . . . . . . . . . . . . . . 16 ((𝐼𝑊𝑘:𝐼⟶ℕ0) → (𝑘 supp 0) = (𝑘 “ ℕ))
125123, 122, 124syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → (𝑘 supp 0) = (𝑘 “ ℕ))
126 eqimss 4007 . . . . . . . . . . . . . . 15 ((𝑘 supp 0) = (𝑘 “ ℕ) → (𝑘 supp 0) ⊆ (𝑘 “ ℕ))
127125, 126syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → (𝑘 supp 0) ⊆ (𝑘 “ ℕ))
128 c0ex 11174 . . . . . . . . . . . . . . 15 0 ∈ V
129128a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → 0 ∈ V)
130122, 127, 123, 129suppssr 8176 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑘𝑧) = 0)
131120, 130sylanl2 681 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑘𝑧) = 0)
132131oveq1d 7404 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)))
1332ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝐼𝑊)
13412ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝑅 ∈ Ring)
135 eldifi 4096 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ)) → 𝑧𝐼)
136135adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝑧𝐼)
1375, 10, 6, 133, 134, 136mvrcl 21907 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑉𝑧) ∈ (Base‘𝑃))
138104, 82, 77mulg0 19012 . . . . . . . . . . . 12 ((𝑉𝑧) ∈ (Base‘𝑃) → (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
139137, 138syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
140132, 139eqtrd 2765 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
141140, 75suppss2 8181 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) supp (1r𝑃)) ⊆ (𝑘 “ ℕ))
142 suppssfifsupp 9337 . . . . . . . . 9 ((((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V ∧ Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∧ (1r𝑃) ∈ V) ∧ ((𝑘 “ ℕ) ∈ Fin ∧ ((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) supp (1r𝑃)) ⊆ (𝑘 “ ℕ))) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) finSupp (1r𝑃))
143115, 117, 118, 119, 141, 142syl32anc 1380 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) finSupp (1r𝑃))
14482, 87, 75, 90, 113, 143gsumsubmcl 19855 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑃) Σg (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))) ∈ (𝐴‘ran 𝑉))
14580, 144eqeltrd 2829 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (𝐴‘ran 𝑉))
146 eqid 2730 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
147 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
148146, 36, 147, 63lssvscl 20867 . . . . . 6 (((𝑃 ∈ LMod ∧ (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃)) ∧ ((𝑥𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (𝐴‘ran 𝑉))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) ∈ (𝐴‘ran 𝑉))
14959, 67, 74, 145, 148syl22anc 838 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) ∈ (𝐴‘ran 𝑉))
150149fmpttd 7089 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(𝐴‘ran 𝑉))
15145mptrabex 7201 . . . . . . 7 (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V
152 funmpt 6556 . . . . . . 7 Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))
153 fvex 6873 . . . . . . 7 (0g𝑃) ∈ V
154151, 152, 1533pm3.2i 1340 . . . . . 6 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V)
155154a1i 11 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V))
1565, 1, 7, 33, 6mplelbas 21906 . . . . . . . 8 (𝑥 ∈ (Base‘𝑃) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 finSupp (0g𝑅)))
157156simprbi 496 . . . . . . 7 (𝑥 ∈ (Base‘𝑃) → 𝑥 finSupp (0g𝑅))
158157adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 finSupp (0g𝑅))
159158fsuppimpd 9326 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g𝑅)) ∈ Fin)
160 ssidd 3972 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g𝑅)) ⊆ (𝑥 supp (0g𝑅)))
161 fvexd 6875 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑃)) → (0g𝑅) ∈ V)
16269, 160, 47, 161suppssr 8176 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (𝑥𝑘) = (0g𝑅))
16371fveq2d 6864 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑃)) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
164163adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
165162, 164eqtrd 2765 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (𝑥𝑘) = (0g‘(Scalar‘𝑃)))
166165oveq1d 7404 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))
167 eldifi 4096 . . . . . . . 8 (𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅))) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
16812ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
1695, 6, 33, 34, 32, 75, 168, 79mplmon 21948 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (Base‘𝑃))
170 eqid 2730 . . . . . . . . . 10 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
1716, 146, 36, 170, 40lmod0vs 20807 . . . . . . . . 9 ((𝑃 ∈ LMod ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
17259, 169, 171syl2anc 584 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
173167, 172sylan2 593 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
174166, 173eqtrd 2765 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
175174, 47suppss2 8181 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) supp (0g𝑃)) ⊆ (𝑥 supp (0g𝑅)))
176 suppssfifsupp 9337 . . . . 5 ((((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V) ∧ ((𝑥 supp (0g𝑅)) ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) supp (0g𝑃)) ⊆ (𝑥 supp (0g𝑅)))) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) finSupp (0g𝑃))
177155, 159, 175, 176syl12anc 836 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) finSupp (0g𝑃))
17840, 44, 47, 57, 150, 177gsumsubgcl 19856 . . 3 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))) ∈ (𝐴‘ran 𝑉))
17939, 178eqeltrd 2829 . 2 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (𝐴‘ran 𝑉))
18031, 179eqelssd 3970 1 (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3913  wss 3916  ifcif 4490   class class class wbr 5109  cmpt 5190  ccnv 5639  ran crn 5641  cima 5643  Fun wfun 6507   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389   supp csupp 8141  m cmap 8801  Fincfn 8920   finSupp cfsupp 9318  0cc0 11074  cn 12187  0cn0 12448  Basecbs 17185  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17408   Σg cgsu 17409  SubMndcsubmnd 18715  .gcmg 19005  SubGrpcsubg 19058  CMndccmn 19716  Abelcabl 19717  mulGrpcmgp 20055  1rcur 20096  Ringcrg 20148  CRingccrg 20149  SubRingcsubrg 20484  LModclmod 20772  LSubSpclss 20843  AssAlgcasa 21765  AlgSpancasp 21766   mPwSer cmps 21819   mVar cmvr 21820   mPoly cmpl 21821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-assa 21768  df-asp 21769  df-psr 21824  df-mvr 21825  df-mpl 21826
This theorem is referenced by:  mplind  21983  evlseu  21996
  Copyright terms: Public domain W3C validator