Step | Hyp | Ref
| Expression |
1 | | mplbas2.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | mplbas2.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
3 | | mplbas2.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
4 | 1, 2, 3 | psrassa 21192 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ AssAlg) |
5 | | mplbas2.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
6 | | eqid 2739 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
7 | | eqid 2739 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
8 | 5, 1, 6, 7 | mplbasss 21212 |
. . . . 5
⊢
(Base‘𝑃)
⊆ (Base‘𝑆) |
9 | 8 | a1i 11 |
. . . 4
⊢ (𝜑 → (Base‘𝑃) ⊆ (Base‘𝑆)) |
10 | | mplbas2.v |
. . . . . . . 8
⊢ 𝑉 = (𝐼 mVar 𝑅) |
11 | | crngring 19804 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 3, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | 1, 10, 7, 2, 12 | mvrf 21202 |
. . . . . . 7
⊢ (𝜑 → 𝑉:𝐼⟶(Base‘𝑆)) |
14 | 13 | ffnd 6610 |
. . . . . 6
⊢ (𝜑 → 𝑉 Fn 𝐼) |
15 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
16 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Ring) |
17 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
18 | 5, 10, 6, 15, 16, 17 | mvrcl 21230 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑉‘𝑥) ∈ (Base‘𝑃)) |
19 | 18 | ralrimiva 3104 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝑉‘𝑥) ∈ (Base‘𝑃)) |
20 | | ffnfv 7001 |
. . . . . 6
⊢ (𝑉:𝐼⟶(Base‘𝑃) ↔ (𝑉 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑉‘𝑥) ∈ (Base‘𝑃))) |
21 | 14, 19, 20 | sylanbrc 583 |
. . . . 5
⊢ (𝜑 → 𝑉:𝐼⟶(Base‘𝑃)) |
22 | 21 | frnd 6617 |
. . . 4
⊢ (𝜑 → ran 𝑉 ⊆ (Base‘𝑃)) |
23 | | mplbas2.a |
. . . . 5
⊢ 𝐴 = (AlgSpan‘𝑆) |
24 | 23, 7 | aspss 21090 |
. . . 4
⊢ ((𝑆 ∈ AssAlg ∧
(Base‘𝑃) ⊆
(Base‘𝑆) ∧ ran
𝑉 ⊆ (Base‘𝑃)) → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃))) |
25 | 4, 9, 22, 24 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃))) |
26 | 1, 5, 6, 2, 12 | mplsubrg 21220 |
. . . 4
⊢ (𝜑 → (Base‘𝑃) ∈ (SubRing‘𝑆)) |
27 | 1, 5, 6, 2, 12 | mpllss 21218 |
. . . 4
⊢ (𝜑 → (Base‘𝑃) ∈ (LSubSp‘𝑆)) |
28 | | eqid 2739 |
. . . . 5
⊢
(LSubSp‘𝑆) =
(LSubSp‘𝑆) |
29 | 23, 7, 28 | aspid 21088 |
. . . 4
⊢ ((𝑆 ∈ AssAlg ∧
(Base‘𝑃) ∈
(SubRing‘𝑆) ∧
(Base‘𝑃) ∈
(LSubSp‘𝑆)) →
(𝐴‘(Base‘𝑃)) = (Base‘𝑃)) |
30 | 4, 26, 27, 29 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐴‘(Base‘𝑃)) = (Base‘𝑃)) |
31 | 25, 30 | sseqtrd 3962 |
. 2
⊢ (𝜑 → (𝐴‘ran 𝑉) ⊆ (Base‘𝑃)) |
32 | | eqid 2739 |
. . . 4
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
33 | | eqid 2739 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
34 | | eqid 2739 |
. . . 4
⊢
(1r‘𝑅) = (1r‘𝑅) |
35 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝐼 ∈ 𝑊) |
36 | | eqid 2739 |
. . . 4
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
37 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring) |
38 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (Base‘𝑃)) |
39 | 5, 32, 33, 34, 35, 6, 36, 37, 38 | mplcoe1 21247 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))))) |
40 | | eqid 2739 |
. . . 4
⊢
(0g‘𝑃) = (0g‘𝑃) |
41 | 5 | mplring 21233 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
42 | 2, 12, 41 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
43 | | ringabl 19828 |
. . . . . 6
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Abel) |
44 | 42, 43 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Abel) |
45 | 44 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑃 ∈ Abel) |
46 | | ovex 7317 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
47 | 46 | rabex 5257 |
. . . . 5
⊢ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V |
48 | 47 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∈
V) |
49 | 13 | frnd 6617 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑉 ⊆ (Base‘𝑆)) |
50 | 23, 7 | aspsubrg 21089 |
. . . . . . . 8
⊢ ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆)) |
51 | 4, 49, 50 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆)) |
52 | 5, 1, 6 | mplval2 21211 |
. . . . . . . . 9
⊢ 𝑃 = (𝑆 ↾s (Base‘𝑃)) |
53 | 52 | subsubrg 20059 |
. . . . . . . 8
⊢
((Base‘𝑃)
∈ (SubRing‘𝑆)
→ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃)))) |
54 | 26, 53 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃)))) |
55 | 51, 31, 54 | mpbir2and 710 |
. . . . . 6
⊢ (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃)) |
56 | | subrgsubg 20039 |
. . . . . 6
⊢ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃)) |
57 | 55, 56 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃)) |
58 | 57 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃)) |
59 | 5 | mpllmod 21232 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
60 | 2, 12, 59 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ LMod) |
61 | 60 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑃 ∈ LMod) |
62 | 23, 7, 28 | asplss 21087 |
. . . . . . . . 9
⊢ ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆)) |
63 | 4, 49, 62 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆)) |
64 | 1, 2, 12 | psrlmod 21179 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ LMod) |
65 | | eqid 2739 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑃) =
(LSubSp‘𝑃) |
66 | 52, 28, 65 | lsslss 20232 |
. . . . . . . . 9
⊢ ((𝑆 ∈ LMod ∧
(Base‘𝑃) ∈
(LSubSp‘𝑆)) →
((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃)))) |
67 | 64, 27, 66 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃)))) |
68 | 63, 31, 67 | mpbir2and 710 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃)) |
69 | 68 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃)) |
70 | | eqid 2739 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
71 | 5, 70, 6, 32, 38 | mplelf 21213 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥:{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
72 | 71 | ffvelrnda 6970 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑥‘𝑘) ∈ (Base‘𝑅)) |
73 | 5, 35, 37 | mplsca 21226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑅 = (Scalar‘𝑃)) |
74 | 73 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 = (Scalar‘𝑃)) |
75 | 74 | fveq2d 6787 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
76 | 72, 75 | eleqtrd 2842 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑥‘𝑘) ∈ (Base‘(Scalar‘𝑃))) |
77 | 2 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑊) |
78 | | eqid 2739 |
. . . . . . . 8
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
79 | | eqid 2739 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) |
80 | 3 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing) |
81 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
82 | 5, 32, 33, 34, 77, 78, 79, 10, 80, 81 | mplcoe2 21251 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))) = ((mulGrp‘𝑃) Σg (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))))) |
83 | | eqid 2739 |
. . . . . . . . 9
⊢
(1r‘𝑃) = (1r‘𝑃) |
84 | 78, 83 | ringidval 19748 |
. . . . . . . 8
⊢
(1r‘𝑃) = (0g‘(mulGrp‘𝑃)) |
85 | 5 | mplcrng 21235 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) |
86 | 2, 3, 85 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ CRing) |
87 | 78 | crngmgp 19800 |
. . . . . . . . . 10
⊢ (𝑃 ∈ CRing →
(mulGrp‘𝑃) ∈
CMnd) |
88 | 86, 87 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (mulGrp‘𝑃) ∈ CMnd) |
89 | 88 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(mulGrp‘𝑃) ∈
CMnd) |
90 | 55 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃)) |
91 | 78 | subrgsubm 20046 |
. . . . . . . . 9
⊢ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃))) |
92 | 90, 91 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃))) |
93 | | simplll 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ 𝐼) → 𝜑) |
94 | 32 | psrbag 21129 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ 𝑊 → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (◡𝑘 “ ℕ) ∈
Fin))) |
95 | 35, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (◡𝑘 “ ℕ) ∈
Fin))) |
96 | 95 | biimpa 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑘:𝐼⟶ℕ0 ∧ (◡𝑘 “ ℕ) ∈
Fin)) |
97 | 96 | simpld 495 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
98 | 97 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ 𝐼) → (𝑘‘𝑧) ∈
ℕ0) |
99 | 23, 7 | aspssid 21091 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → ran 𝑉 ⊆ (𝐴‘ran 𝑉)) |
100 | 4, 49, 99 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝑉 ⊆ (𝐴‘ran 𝑉)) |
101 | 100 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ 𝐼) → ran 𝑉 ⊆ (𝐴‘ran 𝑉)) |
102 | 14 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑉 Fn 𝐼) |
103 | | fnfvelrn 6967 |
. . . . . . . . . . . 12
⊢ ((𝑉 Fn 𝐼 ∧ 𝑧 ∈ 𝐼) → (𝑉‘𝑧) ∈ ran 𝑉) |
104 | 102, 103 | sylan 580 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ 𝐼) → (𝑉‘𝑧) ∈ ran 𝑉) |
105 | 101, 104 | sseldd 3923 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ 𝐼) → (𝑉‘𝑧) ∈ (𝐴‘ran 𝑉)) |
106 | 78, 6 | mgpbas 19735 |
. . . . . . . . . . 11
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
107 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(.r‘𝑃) = (.r‘𝑃) |
108 | 78, 107 | mgpplusg 19733 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) = (+g‘(mulGrp‘𝑃)) |
109 | 107 | subrgmcl 20045 |
. . . . . . . . . . . 12
⊢ (((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ∧ 𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r‘𝑃)𝑣) ∈ (𝐴‘ran 𝑉)) |
110 | 55, 109 | syl3an1 1162 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r‘𝑃)𝑣) ∈ (𝐴‘ran 𝑉)) |
111 | 83 | subrg1cl 20041 |
. . . . . . . . . . . 12
⊢ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (1r‘𝑃) ∈ (𝐴‘ran 𝑉)) |
112 | 55, 111 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1r‘𝑃) ∈ (𝐴‘ran 𝑉)) |
113 | 106, 79, 108, 88, 31, 110, 84, 112 | mulgnn0subcl 18726 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘‘𝑧) ∈ ℕ0 ∧ (𝑉‘𝑧) ∈ (𝐴‘ran 𝑉)) → ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)) ∈ (𝐴‘ran 𝑉)) |
114 | 93, 98, 105, 113 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ 𝐼) → ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)) ∈ (𝐴‘ran 𝑉)) |
115 | 114 | fmpttd 6998 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))):𝐼⟶(𝐴‘ran 𝑉)) |
116 | 2 | mptexd 7109 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) ∈ V) |
117 | 116 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) ∈ V) |
118 | | funmpt 6479 |
. . . . . . . . . 10
⊢ Fun
(𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) |
119 | 118 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → Fun
(𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)))) |
120 | | fvexd 6798 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(1r‘𝑃)
∈ V) |
121 | 96 | simprd 496 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (◡𝑘 “ ℕ) ∈
Fin) |
122 | | elrabi 3619 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝑘 ∈ (ℕ0
↑m 𝐼)) |
123 | | elmapi 8646 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (ℕ0
↑m 𝐼)
→ 𝑘:𝐼⟶ℕ0) |
124 | 123 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0
↑m 𝐼))
→ 𝑘:𝐼⟶ℕ0) |
125 | 2 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0
↑m 𝐼))
→ 𝐼 ∈ 𝑊) |
126 | | frnnn0supp 12298 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘:𝐼⟶ℕ0) → (𝑘 supp 0) = (◡𝑘 “ ℕ)) |
127 | 125, 124,
126 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0
↑m 𝐼))
→ (𝑘 supp 0) = (◡𝑘 “ ℕ)) |
128 | | eqimss 3978 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 supp 0) = (◡𝑘 “ ℕ) → (𝑘 supp 0) ⊆ (◡𝑘 “ ℕ)) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0
↑m 𝐼))
→ (𝑘 supp 0) ⊆
(◡𝑘 “ ℕ)) |
130 | | c0ex 10978 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0
↑m 𝐼))
→ 0 ∈ V) |
132 | 124, 129,
125, 131 | suppssr 8021 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0
↑m 𝐼))
∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → (𝑘‘𝑧) = 0) |
133 | 122, 132 | sylanl2 678 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → (𝑘‘𝑧) = 0) |
134 | 133 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)) =
(0(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) |
135 | 2 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → 𝐼 ∈ 𝑊) |
136 | 12 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → 𝑅 ∈ Ring) |
137 | | eldifi 4062 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ)) → 𝑧 ∈ 𝐼) |
138 | 137 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → 𝑧 ∈ 𝐼) |
139 | 5, 10, 6, 135, 136, 138 | mvrcl 21230 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → (𝑉‘𝑧) ∈ (Base‘𝑃)) |
140 | 106, 84, 79 | mulg0 18716 |
. . . . . . . . . . . 12
⊢ ((𝑉‘𝑧) ∈ (Base‘𝑃) →
(0(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)) = (1r‘𝑃)) |
141 | 139, 140 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) →
(0(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)) = (1r‘𝑃)) |
142 | 134, 141 | eqtrd 2779 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (◡𝑘 “ ℕ))) → ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)) = (1r‘𝑃)) |
143 | 142, 77 | suppss2 8025 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) supp (1r‘𝑃)) ⊆ (◡𝑘 “ ℕ)) |
144 | | suppssfifsupp 9152 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) ∈ V ∧ Fun (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) ∧ (1r‘𝑃) ∈ V) ∧ ((◡𝑘 “ ℕ) ∈ Fin ∧ ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) supp (1r‘𝑃)) ⊆ (◡𝑘 “ ℕ))) → (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) finSupp (1r‘𝑃)) |
145 | 117, 119,
120, 121, 143, 144 | syl32anc 1377 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧))) finSupp (1r‘𝑃)) |
146 | 84, 89, 77, 92, 115, 145 | gsumsubmcl 19529 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((mulGrp‘𝑃)
Σg (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧)(.g‘(mulGrp‘𝑃))(𝑉‘𝑧)))) ∈ (𝐴‘ran 𝑉)) |
147 | 82, 146 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))) ∈ (𝐴‘ran 𝑉)) |
148 | | eqid 2739 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
149 | | eqid 2739 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
150 | 148, 36, 149, 65 | lssvscl 20226 |
. . . . . 6
⊢ (((𝑃 ∈ LMod ∧ (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃)) ∧ ((𝑥‘𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))) ∈ (𝐴‘ran 𝑉))) → ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))) ∈ (𝐴‘ran 𝑉)) |
151 | 61, 69, 76, 147, 150 | syl22anc 836 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))) ∈ (𝐴‘ran 𝑉)) |
152 | 151 | fmpttd 6998 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))):{𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}⟶(𝐴‘ran 𝑉)) |
153 | 46 | mptrabex 7110 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) ∈ V |
154 | | funmpt 6479 |
. . . . . . 7
⊢ Fun
(𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) |
155 | | fvex 6796 |
. . . . . . 7
⊢
(0g‘𝑃) ∈ V |
156 | 153, 154,
155 | 3pm3.2i 1338 |
. . . . . 6
⊢ ((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) ∧ (0g‘𝑃) ∈ V) |
157 | 156 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) ∧ (0g‘𝑃) ∈ V)) |
158 | 5, 1, 7, 33, 6 | mplelbas 21208 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑃) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 finSupp (0g‘𝑅))) |
159 | 158 | simprbi 497 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑃) → 𝑥 finSupp (0g‘𝑅)) |
160 | 159 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 finSupp (0g‘𝑅)) |
161 | 160 | fsuppimpd 9144 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g‘𝑅)) ∈ Fin) |
162 | | ssidd 3945 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g‘𝑅)) ⊆ (𝑥 supp (0g‘𝑅))) |
163 | | fvexd 6798 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (0g‘𝑅) ∈ V) |
164 | 71, 162, 48, 163 | suppssr 8021 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g‘𝑅)))) → (𝑥‘𝑘) = (0g‘𝑅)) |
165 | 73 | fveq2d 6787 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
166 | 165 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g‘𝑅)))) →
(0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
167 | 164, 166 | eqtrd 2779 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g‘𝑅)))) → (𝑥‘𝑘) = (0g‘(Scalar‘𝑃))) |
168 | 167 | oveq1d 7299 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g‘𝑅)))) → ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))) =
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) |
169 | | eldifi 4062 |
. . . . . . . 8
⊢ (𝑘 ∈ ({𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g‘𝑅))) → 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin}) |
170 | 12 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring) |
171 | 5, 6, 33, 34, 32, 77, 170, 81 | mplmon 21245 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘𝑃)) |
172 | | eqid 2739 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑃)) =
(0g‘(Scalar‘𝑃)) |
173 | 6, 148, 36, 172, 40 | lmod0vs 20165 |
. . . . . . . . 9
⊢ ((𝑃 ∈ LMod ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘𝑃)) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))) = (0g‘𝑃)) |
174 | 61, 171, 173 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin}) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))) = (0g‘𝑃)) |
175 | 169, 174 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g‘𝑅)))) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))) = (0g‘𝑃)) |
176 | 168, 175 | eqtrd 2779 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g‘𝑅)))) → ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))) = (0g‘𝑃)) |
177 | 176, 48 | suppss2 8025 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) supp (0g‘𝑃)) ⊆ (𝑥 supp (0g‘𝑅))) |
178 | | suppssfifsupp 9152 |
. . . . 5
⊢ ((((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) ∧ (0g‘𝑃) ∈ V) ∧ ((𝑥 supp (0g‘𝑅)) ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) supp (0g‘𝑃)) ⊆ (𝑥 supp (0g‘𝑅)))) → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) finSupp (0g‘𝑃)) |
179 | 157, 161,
177, 178 | syl12anc 834 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅))))) finSupp (0g‘𝑃)) |
180 | 40, 45, 48, 58, 152, 179 | gsumsubgcl 19530 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥‘𝑘)( ·𝑠
‘𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈ Fin} ↦
if(𝑦 = 𝑘, (1r‘𝑅), (0g‘𝑅)))))) ∈ (𝐴‘ran 𝑉)) |
181 | 39, 180 | eqeltrd 2840 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (𝐴‘ran 𝑉)) |
182 | 31, 181 | eqelssd 3943 |
1
⊢ (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃)) |