MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmneg Structured version   Visualization version   GIF version

Theorem lcmneg 16521
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))

Proof of Theorem lcmneg
StepHypRef Expression
1 lcm0val 16512 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
2 znegcl 12517 . . . . . . . . 9 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
3 lcm0val 16512 . . . . . . . . 9 (-𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
42, 3syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
51, 4eqtr4d 2771 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (-𝑁 lcm 0))
65ad2antlr 727 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 0) = (-𝑁 lcm 0))
7 oveq2 7363 . . . . . . . 8 (𝑀 = 0 → (𝑁 lcm 𝑀) = (𝑁 lcm 0))
8 oveq2 7363 . . . . . . . 8 (𝑀 = 0 → (-𝑁 lcm 𝑀) = (-𝑁 lcm 0))
97, 8eqeq12d 2749 . . . . . . 7 (𝑀 = 0 → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
109adantl 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
116, 10mpbird 257 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀))
12 lcmcom 16511 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
13 lcmcom 16511 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
142, 13sylan2 593 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
1512, 14eqeq12d 2749 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1615adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1711, 16mpbird 257 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
18 neg0 11418 . . . . . . . 8 -0 = 0
1918oveq2i 7366 . . . . . . 7 (𝑀 lcm -0) = (𝑀 lcm 0)
2019eqcomi 2742 . . . . . 6 (𝑀 lcm 0) = (𝑀 lcm -0)
21 oveq2 7363 . . . . . 6 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
22 negeq 11363 . . . . . . 7 (𝑁 = 0 → -𝑁 = -0)
2322oveq2d 7371 . . . . . 6 (𝑁 = 0 → (𝑀 lcm -𝑁) = (𝑀 lcm -0))
2420, 21, 233eqtr4a 2794 . . . . 5 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2524adantl 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2617, 25jaodan 959 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
27 dvdslcm 16516 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
282, 27sylan2 593 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
29 simpr 484 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
30 lcmcl 16519 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
312, 30sylan2 593 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
3231nn0zd 12504 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℤ)
33 negdvdsb 16190 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 lcm -𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3429, 32, 33syl2anc 584 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3534anbi2d 630 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) ↔ (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁))))
3628, 35mpbird 257 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
3736adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
38 zcn 12484 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3938negeq0d 11475 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
4039orbi2d 915 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑀 = 0 ∨ -𝑁 = 0)))
4140notbid 318 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∨ -𝑁 = 0)))
4241biimpa 476 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
4342adantll 714 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
44 lcmn0cl 16515 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
452, 44sylanl2 681 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
4643, 45syldan 591 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
47 simpl 482 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 3anass 1094 . . . . . . 7 (((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 lcm -𝑁) ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
4946, 47, 48sylanbrc 583 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
50 simpr 484 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ 𝑁 = 0))
51 lcmledvds 16517 . . . . . 6 ((((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5249, 50, 51syl2anc 584 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5337, 52mpd 15 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁))
54 dvdslcm 16516 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
5554adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
56 simplr 768 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ)
57 lcmn0cl 16515 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ)
5857nnzd 12505 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℤ)
59 negdvdsb 16190 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6056, 58, 59syl2anc 584 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6160anbi2d 630 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁))))
62 lcmledvds 16517 . . . . . . . . . 10 ((((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6362ex 412 . . . . . . . . 9 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
642, 63syl3an3 1165 . . . . . . . 8 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
65643expib 1122 . . . . . . 7 ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))))
6657, 47, 43, 65syl3c 66 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6761, 66sylbid 240 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6855, 67mpd 15 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))
69 lcmcl 16519 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
7069nn0red 12454 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℝ)
7130nn0red 12454 . . . . . . 7 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
722, 71sylan2 593 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
7370, 72letri3d 11266 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7473adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7553, 68, 74mpbir2and 713 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
7626, 75pm2.61dan 812 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
7776eqcomd 2739 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7355  cr 11016  0cc0 11017  cle 11158  -cneg 11356  cn 12136  0cn0 12392  cz 12479  cdvds 16170   lcm clcm 16506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-lcm 16508
This theorem is referenced by:  neglcm  16522  lcmabs  16523
  Copyright terms: Public domain W3C validator