![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > toslub | Structured version Visualization version GIF version |
Description: In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
Ref | Expression |
---|---|
toslub.b | ⊢ 𝐵 = (Base‘𝐾) |
toslub.l | ⊢ < = (lt‘𝐾) |
toslub.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
toslub.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
toslub | ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toslub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | toslub.l | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | toslub.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
4 | toslub.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
5 | eqid 2740 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 1, 2, 3, 4, 5 | toslublem 32945 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
7 | 6 | riotabidva 7424 | . 2 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
8 | eqid 2740 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
9 | biid 261 | . . 3 ⊢ ((∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐))) | |
10 | 1, 5, 8, 9, 3, 4 | lubval 18426 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)))) |
11 | 1, 5, 2 | tosso 18489 | . . . . 5 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
12 | 11 | ibi 267 | . . . 4 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
13 | 12 | simpld 494 | . . 3 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
14 | id 22 | . . . 4 ⊢ ( < Or 𝐵 → < Or 𝐵) | |
15 | 14 | supval2 9524 | . . 3 ⊢ ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
16 | 3, 13, 15 | 3syl 18 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
17 | 7, 10, 16 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 I cid 5592 Or wor 5606 ↾ cres 5702 ‘cfv 6573 ℩crio 7403 supcsup 9509 Basecbs 17258 lecple 17318 ltcplt 18378 lubclub 18379 Tosetctos 18486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-sup 9511 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-toset 18487 |
This theorem is referenced by: xrsp1 32996 |
Copyright terms: Public domain | W3C validator |