Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > toslub | Structured version Visualization version GIF version |
Description: In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
Ref | Expression |
---|---|
toslub.b | ⊢ 𝐵 = (Base‘𝐾) |
toslub.l | ⊢ < = (lt‘𝐾) |
toslub.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
toslub.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
toslub | ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toslub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | toslub.l | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | toslub.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
4 | toslub.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
5 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 1, 2, 3, 4, 5 | toslublem 31152 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
7 | 6 | riotabidva 7232 | . 2 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
8 | eqid 2738 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
9 | biid 260 | . . 3 ⊢ ((∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐))) | |
10 | 1, 5, 8, 9, 3, 4 | lubval 17989 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)))) |
11 | 1, 5, 2 | tosso 18052 | . . . . 5 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
12 | 11 | ibi 266 | . . . 4 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
13 | 12 | simpld 494 | . . 3 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
14 | id 22 | . . . 4 ⊢ ( < Or 𝐵 → < Or 𝐵) | |
15 | 14 | supval2 9144 | . . 3 ⊢ ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
16 | 3, 13, 15 | 3syl 18 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
17 | 7, 10, 16 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 I cid 5479 Or wor 5493 ↾ cres 5582 ‘cfv 6418 ℩crio 7211 supcsup 9129 Basecbs 16840 lecple 16895 ltcplt 17941 lubclub 17942 Tosetctos 18049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-sup 9131 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-toset 18050 |
This theorem is referenced by: xrsp1 31193 |
Copyright terms: Public domain | W3C validator |