| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > toslub | Structured version Visualization version GIF version | ||
| Description: In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
| Ref | Expression |
|---|---|
| toslub.b | ⊢ 𝐵 = (Base‘𝐾) |
| toslub.l | ⊢ < = (lt‘𝐾) |
| toslub.1 | ⊢ (𝜑 → 𝐾 ∈ Toset) |
| toslub.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| toslub | ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toslub.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | toslub.l | . . . 4 ⊢ < = (lt‘𝐾) | |
| 3 | toslub.1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Toset) | |
| 4 | toslub.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 5 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | toslublem 32898 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
| 7 | 6 | riotabidva 7363 | . 2 ⊢ (𝜑 → (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐))) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
| 8 | eqid 2729 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 9 | biid 261 | . . 3 ⊢ ((∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐))) | |
| 10 | 1, 5, 8, 9, 3, 4 | lubval 18315 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏(le‘𝐾)𝑐 → 𝑎(le‘𝐾)𝑐)))) |
| 11 | 1, 5, 2 | tosso 18378 | . . . . 5 ⊢ (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))) |
| 12 | 11 | ibi 267 | . . . 4 ⊢ (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))) |
| 13 | 12 | simpld 494 | . . 3 ⊢ (𝐾 ∈ Toset → < Or 𝐵) |
| 14 | id 22 | . . . 4 ⊢ ( < Or 𝐵 → < Or 𝐵) | |
| 15 | 14 | supval2 9406 | . . 3 ⊢ ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
| 16 | 3, 13, 15 | 3syl 18 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, < ) = (℩𝑎 ∈ 𝐵 (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) |
| 17 | 7, 10, 16 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 I cid 5532 Or wor 5545 ↾ cres 5640 ‘cfv 6511 ℩crio 7343 supcsup 9391 Basecbs 17179 lecple 17227 ltcplt 18269 lubclub 18270 Tosetctos 18375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-sup 9393 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-toset 18376 |
| This theorem is referenced by: xrsp1 32951 |
| Copyright terms: Public domain | W3C validator |