Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslub Structured version   Visualization version   GIF version

Theorem toslub 31153
Description: In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.)
Hypotheses
Ref Expression
toslub.b 𝐵 = (Base‘𝐾)
toslub.l < = (lt‘𝐾)
toslub.1 (𝜑𝐾 ∈ Toset)
toslub.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
toslub (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))

Proof of Theorem toslub
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toslub.b . . . 4 𝐵 = (Base‘𝐾)
2 toslub.l . . . 4 < = (lt‘𝐾)
3 toslub.1 . . . 4 (𝜑𝐾 ∈ Toset)
4 toslub.2 . . . 4 (𝜑𝐴𝐵)
5 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5toslublem 31152 . . 3 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 7232 . 2 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2738 . . 3 (lub‘𝐾) = (lub‘𝐾)
9 biid 260 . . 3 ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)))
101, 5, 8, 9, 3, 4lubval 17989 . 2 (𝜑 → ((lub‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))))
111, 5, 2tosso 18052 . . . . 5 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 266 . . . 4 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 494 . . 3 (𝐾 ∈ Toset → < Or 𝐵)
14 id 22 . . . 4 ( < Or 𝐵< Or 𝐵)
1514supval2 9144 . . 3 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
163, 13, 153syl 18 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
177, 10, 163eqtr4d 2788 1 (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070   I cid 5479   Or wor 5493  cres 5582  cfv 6418  crio 7211  supcsup 9129  Basecbs 16840  lecple 16895  ltcplt 17941  lubclub 17942  Tosetctos 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-sup 9131  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-toset 18050
This theorem is referenced by:  xrsp1  31193
  Copyright terms: Public domain W3C validator