Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslub Structured version   Visualization version   GIF version

Theorem toslub 30681
Description: In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.)
Hypotheses
Ref Expression
toslub.b 𝐵 = (Base‘𝐾)
toslub.l < = (lt‘𝐾)
toslub.1 (𝜑𝐾 ∈ Toset)
toslub.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
toslub (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))

Proof of Theorem toslub
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toslub.b . . . 4 𝐵 = (Base‘𝐾)
2 toslub.l . . . 4 < = (lt‘𝐾)
3 toslub.1 . . . 4 (𝜑𝐾 ∈ Toset)
4 toslub.2 . . . 4 (𝜑𝐴𝐵)
5 eqid 2798 . . . 4 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5toslublem 30680 . . 3 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 7112 . 2 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2798 . . 3 (lub‘𝐾) = (lub‘𝐾)
9 biid 264 . . 3 ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)))
101, 5, 8, 9, 3, 4lubval 17586 . 2 (𝜑 → ((lub‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))))
111, 5, 2tosso 17638 . . . . 5 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 270 . . . 4 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 498 . . 3 (𝐾 ∈ Toset → < Or 𝐵)
14 id 22 . . . 4 ( < Or 𝐵< Or 𝐵)
1514supval2 8903 . . 3 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
163, 13, 153syl 18 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
177, 10, 163eqtr4d 2843 1 (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881   class class class wbr 5030   I cid 5424   Or wor 5437  cres 5521  cfv 6324  crio 7092  supcsup 8888  Basecbs 16475  lecple 16564  ltcplt 17543  lubclub 17544  Tosetctos 17635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-sup 8890  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-toset 17636
This theorem is referenced by:  xrsp1  30716
  Copyright terms: Public domain W3C validator