Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslub Structured version   Visualization version   GIF version

Theorem toslub 32906
Description: In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.)
Hypotheses
Ref Expression
toslub.b 𝐵 = (Base‘𝐾)
toslub.l < = (lt‘𝐾)
toslub.1 (𝜑𝐾 ∈ Toset)
toslub.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
toslub (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))

Proof of Theorem toslub
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toslub.b . . . 4 𝐵 = (Base‘𝐾)
2 toslub.l . . . 4 < = (lt‘𝐾)
3 toslub.1 . . . 4 (𝜑𝐾 ∈ Toset)
4 toslub.2 . . . 4 (𝜑𝐴𝐵)
5 eqid 2730 . . . 4 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5toslublem 32905 . . 3 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 7366 . 2 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2730 . . 3 (lub‘𝐾) = (lub‘𝐾)
9 biid 261 . . 3 ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)))
101, 5, 8, 9, 3, 4lubval 18322 . 2 (𝜑 → ((lub‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))))
111, 5, 2tosso 18385 . . . . 5 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 267 . . . 4 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 494 . . 3 (𝐾 ∈ Toset → < Or 𝐵)
14 id 22 . . . 4 ( < Or 𝐵< Or 𝐵)
1514supval2 9413 . . 3 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
163, 13, 153syl 18 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
177, 10, 163eqtr4d 2775 1 (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110   I cid 5535   Or wor 5548  cres 5643  cfv 6514  crio 7346  supcsup 9398  Basecbs 17186  lecple 17234  ltcplt 18276  lubclub 18277  Tosetctos 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-sup 9400  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-toset 18383
This theorem is referenced by:  xrsp1  32958
  Copyright terms: Public domain W3C validator