Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslub Structured version   Visualization version   GIF version

Theorem toslub 32963
Description: In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.)
Hypotheses
Ref Expression
toslub.b 𝐵 = (Base‘𝐾)
toslub.l < = (lt‘𝐾)
toslub.1 (𝜑𝐾 ∈ Toset)
toslub.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
toslub (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))

Proof of Theorem toslub
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toslub.b . . . 4 𝐵 = (Base‘𝐾)
2 toslub.l . . . 4 < = (lt‘𝐾)
3 toslub.1 . . . 4 (𝜑𝐾 ∈ Toset)
4 toslub.2 . . . 4 (𝜑𝐴𝐵)
5 eqid 2737 . . . 4 (le‘𝐾) = (le‘𝐾)
61, 2, 3, 4, 5toslublem 32962 . . 3 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
76riotabidva 7407 . 2 (𝜑 → (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
8 eqid 2737 . . 3 (lub‘𝐾) = (lub‘𝐾)
9 biid 261 . . 3 ((∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)) ↔ (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐)))
101, 5, 8, 9, 3, 4lubval 18401 . 2 (𝜑 → ((lub‘𝐾)‘𝐴) = (𝑎𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏(le‘𝐾)𝑐𝑎(le‘𝐾)𝑐))))
111, 5, 2tosso 18464 . . . . 5 (𝐾 ∈ Toset → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾))))
1211ibi 267 . . . 4 (𝐾 ∈ Toset → ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ (le‘𝐾)))
1312simpld 494 . . 3 (𝐾 ∈ Toset → < Or 𝐵)
14 id 22 . . . 4 ( < Or 𝐵< Or 𝐵)
1514supval2 9495 . . 3 ( < Or 𝐵 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
163, 13, 153syl 18 . 2 (𝜑 → sup(𝐴, 𝐵, < ) = (𝑎𝐵 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
177, 10, 163eqtr4d 2787 1 (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143   I cid 5577   Or wor 5591  cres 5687  cfv 6561  crio 7387  supcsup 9480  Basecbs 17247  lecple 17304  ltcplt 18354  lubclub 18355  Tosetctos 18461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-sup 9482  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-toset 18462
This theorem is referenced by:  xrsp1  33015
  Copyright terms: Public domain W3C validator