![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mattposcl | Structured version Visualization version GIF version |
Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
mattposcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mattposcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
mattposcl | ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mattposcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | mattposcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 2, 3 | matbas2i 22444 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
5 | elmapi 8888 | . . . 4 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
6 | tposf 8278 | . . . 4 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
8 | fvex 6920 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
9 | 1, 3 | matrcl 22432 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
11 | xpfi 9356 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
12 | 11 | anidms 566 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
14 | elmapg 8878 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → (tpos 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))) | |
15 | 8, 13, 14 | sylancr 587 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (tpos 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))) |
16 | 7, 15 | mpbird 257 | . 2 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
17 | 1, 2 | matbas2 22443 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
18 | 9, 17 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝐵 → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
19 | 18, 3 | eqtr4di 2793 | . 2 ⊢ (𝑀 ∈ 𝐵 → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵) |
20 | 16, 19 | eleqtrd 2841 | 1 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 × cxp 5687 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 tpos ctpos 8249 ↑m cmap 8865 Fincfn 8984 Basecbs 17245 Mat cmat 22427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-mat 22428 |
This theorem is referenced by: mattposvs 22477 mdettpos 22633 madutpos 22664 madulid 22667 mdetpmtr2 33785 |
Copyright terms: Public domain | W3C validator |