![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mattposcl | Structured version Visualization version GIF version |
Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
mattposcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mattposcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
mattposcl | ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mattposcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2797 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | mattposcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 2, 3 | matbas2i 20550 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
5 | elmapi 8115 | . . . 4 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
6 | tposf 7616 | . . . 4 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
8 | fvex 6422 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
9 | 1, 3 | matrcl 20540 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 489 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
11 | xpfi 8471 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
12 | 11 | anidms 563 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 × 𝑁) ∈ Fin) |
14 | elmapg 8106 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → (tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))) | |
15 | 8, 13, 14 | sylancr 582 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ tpos 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))) |
16 | 7, 15 | mpbird 249 | . 2 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
17 | 1, 2 | matbas2 20549 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
18 | 9, 17 | syl 17 | . . 3 ⊢ (𝑀 ∈ 𝐵 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
19 | 18, 3 | syl6eqr 2849 | . 2 ⊢ (𝑀 ∈ 𝐵 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 𝐵) |
20 | 16, 19 | eleqtrd 2878 | 1 ⊢ (𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3383 × cxp 5308 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 tpos ctpos 7587 ↑𝑚 cmap 8093 Fincfn 8193 Basecbs 16181 Mat cmat 20535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-ot 4375 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-tpos 7588 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-sup 8588 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-hom 16288 df-cco 16289 df-0g 16414 df-prds 16420 df-pws 16422 df-sra 19492 df-rgmod 19493 df-dsmm 20398 df-frlm 20413 df-mat 20536 |
This theorem is referenced by: mattposvs 20584 mdettpos 20740 madutpos 20771 madulid 20774 mdetpmtr2 30398 |
Copyright terms: Public domain | W3C validator |