![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposmap | Structured version Visualization version GIF version |
Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
Ref | Expression |
---|---|
tposmap | ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8907 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → 𝐴:(𝐼 × 𝐽)⟶𝐵) | |
2 | tposf 8295 | . . 3 ⊢ (𝐴:(𝐼 × 𝐽)⟶𝐵 → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) |
4 | elmapex 8906 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V)) | |
5 | cnvxp 6188 | . . . . 5 ⊢ ◡(𝐼 × 𝐽) = (𝐽 × 𝐼) | |
6 | cnvexg 7964 | . . . . 5 ⊢ ((𝐼 × 𝐽) ∈ V → ◡(𝐼 × 𝐽) ∈ V) | |
7 | 5, 6 | eqeltrrid 2849 | . . . 4 ⊢ ((𝐼 × 𝐽) ∈ V → (𝐽 × 𝐼) ∈ V) |
8 | 7 | anim2i 616 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V) → (𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V)) |
9 | elmapg 8897 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) | |
10 | 4, 8, 9 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) |
11 | 3, 10 | mpbird 257 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 × cxp 5698 ◡ccnv 5699 ⟶wf 6569 (class class class)co 7448 tpos ctpos 8266 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-tpos 8267 df-map 8886 |
This theorem is referenced by: mamutpos 22485 |
Copyright terms: Public domain | W3C validator |