MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposmap Structured version   Visualization version   GIF version

Theorem tposmap 22344
Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Assertion
Ref Expression
tposmap (𝐴 ∈ (𝐵m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵m (𝐽 × 𝐼)))

Proof of Theorem tposmap
StepHypRef Expression
1 elmapi 8822 . . 3 (𝐴 ∈ (𝐵m (𝐼 × 𝐽)) → 𝐴:(𝐼 × 𝐽)⟶𝐵)
2 tposf 8233 . . 3 (𝐴:(𝐼 × 𝐽)⟶𝐵 → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)
31, 2syl 17 . 2 (𝐴 ∈ (𝐵m (𝐼 × 𝐽)) → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)
4 elmapex 8821 . . 3 (𝐴 ∈ (𝐵m (𝐼 × 𝐽)) → (𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V))
5 cnvxp 6130 . . . . 5 (𝐼 × 𝐽) = (𝐽 × 𝐼)
6 cnvexg 7900 . . . . 5 ((𝐼 × 𝐽) ∈ V → (𝐼 × 𝐽) ∈ V)
75, 6eqeltrrid 2833 . . . 4 ((𝐼 × 𝐽) ∈ V → (𝐽 × 𝐼) ∈ V)
87anim2i 617 . . 3 ((𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V) → (𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V))
9 elmapg 8812 . . 3 ((𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V) → (tpos 𝐴 ∈ (𝐵m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵))
104, 8, 93syl 18 . 2 (𝐴 ∈ (𝐵m (𝐼 × 𝐽)) → (tpos 𝐴 ∈ (𝐵m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵))
113, 10mpbird 257 1 (𝐴 ∈ (𝐵m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵m (𝐽 × 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3447   × cxp 5636  ccnv 5637  wf 6507  (class class class)co 7387  tpos ctpos 8204  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-tpos 8205  df-map 8801
This theorem is referenced by:  mamutpos  22345
  Copyright terms: Public domain W3C validator