| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposmap | Structured version Visualization version GIF version | ||
| Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| tposmap | ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8782 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → 𝐴:(𝐼 × 𝐽)⟶𝐵) | |
| 2 | tposf 8193 | . . 3 ⊢ (𝐴:(𝐼 × 𝐽)⟶𝐵 → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) |
| 4 | elmapex 8781 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V)) | |
| 5 | cnvxp 6112 | . . . . 5 ⊢ ◡(𝐼 × 𝐽) = (𝐽 × 𝐼) | |
| 6 | cnvexg 7863 | . . . . 5 ⊢ ((𝐼 × 𝐽) ∈ V → ◡(𝐼 × 𝐽) ∈ V) | |
| 7 | 5, 6 | eqeltrrid 2838 | . . . 4 ⊢ ((𝐼 × 𝐽) ∈ V → (𝐽 × 𝐼) ∈ V) |
| 8 | 7 | anim2i 617 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V) → (𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V)) |
| 9 | elmapg 8772 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) | |
| 10 | 4, 8, 9 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) |
| 11 | 3, 10 | mpbird 257 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3438 × cxp 5619 ◡ccnv 5620 ⟶wf 6485 (class class class)co 7355 tpos ctpos 8164 ↑m cmap 8759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-tpos 8165 df-map 8761 |
| This theorem is referenced by: mamutpos 22383 |
| Copyright terms: Public domain | W3C validator |