Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposmap | Structured version Visualization version GIF version |
Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
Ref | Expression |
---|---|
tposmap | ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8700 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → 𝐴:(𝐼 × 𝐽)⟶𝐵) | |
2 | tposf 8132 | . . 3 ⊢ (𝐴:(𝐼 × 𝐽)⟶𝐵 → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) |
4 | elmapex 8699 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V)) | |
5 | cnvxp 6089 | . . . . 5 ⊢ ◡(𝐼 × 𝐽) = (𝐽 × 𝐼) | |
6 | cnvexg 7831 | . . . . 5 ⊢ ((𝐼 × 𝐽) ∈ V → ◡(𝐼 × 𝐽) ∈ V) | |
7 | 5, 6 | eqeltrrid 2842 | . . . 4 ⊢ ((𝐼 × 𝐽) ∈ V → (𝐽 × 𝐼) ∈ V) |
8 | 7 | anim2i 617 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V) → (𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V)) |
9 | elmapg 8691 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) | |
10 | 4, 8, 9 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) |
11 | 3, 10 | mpbird 256 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 Vcvv 3441 × cxp 5612 ◡ccnv 5613 ⟶wf 6469 (class class class)co 7329 tpos ctpos 8103 ↑m cmap 8678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fo 6479 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-tpos 8104 df-map 8680 |
This theorem is referenced by: mamutpos 21705 |
Copyright terms: Public domain | W3C validator |