| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposmap | Structured version Visualization version GIF version | ||
| Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| tposmap | ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8768 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → 𝐴:(𝐼 × 𝐽)⟶𝐵) | |
| 2 | tposf 8179 | . . 3 ⊢ (𝐴:(𝐼 × 𝐽)⟶𝐵 → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) |
| 4 | elmapex 8767 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V)) | |
| 5 | cnvxp 6101 | . . . . 5 ⊢ ◡(𝐼 × 𝐽) = (𝐽 × 𝐼) | |
| 6 | cnvexg 7849 | . . . . 5 ⊢ ((𝐼 × 𝐽) ∈ V → ◡(𝐼 × 𝐽) ∈ V) | |
| 7 | 5, 6 | eqeltrrid 2834 | . . . 4 ⊢ ((𝐼 × 𝐽) ∈ V → (𝐽 × 𝐼) ∈ V) |
| 8 | 7 | anim2i 617 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V) → (𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V)) |
| 9 | elmapg 8758 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) | |
| 10 | 4, 8, 9 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) |
| 11 | 3, 10 | mpbird 257 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 Vcvv 3434 × cxp 5612 ◡ccnv 5613 ⟶wf 6473 (class class class)co 7341 tpos ctpos 8150 ↑m cmap 8745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fo 6483 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-tpos 8151 df-map 8747 |
| This theorem is referenced by: mamutpos 22366 |
| Copyright terms: Public domain | W3C validator |