![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposmap | Structured version Visualization version GIF version |
Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.) |
Ref | Expression |
---|---|
tposmap | ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8849 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → 𝐴:(𝐼 × 𝐽)⟶𝐵) | |
2 | tposf 8245 | . . 3 ⊢ (𝐴:(𝐼 × 𝐽)⟶𝐵 → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵) |
4 | elmapex 8848 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V)) | |
5 | cnvxp 6156 | . . . . 5 ⊢ ◡(𝐼 × 𝐽) = (𝐽 × 𝐼) | |
6 | cnvexg 7919 | . . . . 5 ⊢ ((𝐼 × 𝐽) ∈ V → ◡(𝐼 × 𝐽) ∈ V) | |
7 | 5, 6 | eqeltrrid 2837 | . . . 4 ⊢ ((𝐼 × 𝐽) ∈ V → (𝐽 × 𝐼) ∈ V) |
8 | 7 | anim2i 616 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V) → (𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V)) |
9 | elmapg 8839 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) | |
10 | 4, 8, 9 | 3syl 18 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → (tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)) |
11 | 3, 10 | mpbird 257 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵 ↑m (𝐽 × 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 × cxp 5674 ◡ccnv 5675 ⟶wf 6539 (class class class)co 7412 tpos ctpos 8216 ↑m cmap 8826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-tpos 8217 df-map 8828 |
This theorem is referenced by: mamutpos 22281 |
Copyright terms: Public domain | W3C validator |