Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposf1o Structured version   Visualization version   GIF version

Theorem tposf1o 48845
Description: Condition of a bijective transposition. (Contributed by Zhi Wang, 5-Oct-2025.)
Assertion
Ref Expression
tposf1o (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶)

Proof of Theorem tposf1o
StepHypRef Expression
1 relxp 5649 . . 3 Rel (𝐴 × 𝐵)
2 tposf1o2 8208 . . 3 (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶))
31, 2ax-mp 5 . 2 (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶)
4 cnvxp 6118 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
5 f1oeq2 6771 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶))
64, 5ax-mp 5 . 2 (tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶)
73, 6sylib 218 1 (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   × cxp 5629  ccnv 5630  Rel wrel 5636  1-1-ontowf1o 6498  tpos ctpos 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1st 7947  df-2nd 7948  df-tpos 8182
This theorem is referenced by:  tposidf1o  48848
  Copyright terms: Public domain W3C validator