| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposf1o | Structured version Visualization version GIF version | ||
| Description: Condition of a bijective transposition. (Contributed by Zhi Wang, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposf1o | ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5649 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | tposf1o2 8208 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶) |
| 4 | cnvxp 6118 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 5 | f1oeq2 6771 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶) |
| 7 | 3, 6 | sylib 218 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 × cxp 5629 ◡ccnv 5630 Rel wrel 5636 –1-1-onto→wf1o 6498 tpos ctpos 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-tpos 8182 |
| This theorem is referenced by: tposidf1o 48848 |
| Copyright terms: Public domain | W3C validator |