Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposf1o Structured version   Visualization version   GIF version

Theorem tposf1o 48860
Description: Condition of a bijective transposition. (Contributed by Zhi Wang, 5-Oct-2025.)
Assertion
Ref Expression
tposf1o (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶)

Proof of Theorem tposf1o
StepHypRef Expression
1 relxp 5658 . . 3 Rel (𝐴 × 𝐵)
2 tposf1o2 8233 . . 3 (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶))
31, 2ax-mp 5 . 2 (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶)
4 cnvxp 6132 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
5 f1oeq2 6791 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶))
64, 5ax-mp 5 . 2 (tpos 𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶)
73, 6sylib 218 1 (𝐹:(𝐴 × 𝐵)–1-1-onto𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   × cxp 5638  ccnv 5639  Rel wrel 5645  1-1-ontowf1o 6512  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-1st 7970  df-2nd 7971  df-tpos 8207
This theorem is referenced by:  tposidf1o  48863
  Copyright terms: Public domain W3C validator