| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposf1o | Structured version Visualization version GIF version | ||
| Description: Condition of a bijective transposition. (Contributed by Zhi Wang, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposf1o | ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5701 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | tposf1o2 8273 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶) |
| 4 | cnvxp 6175 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 5 | f1oeq2 6835 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (tpos 𝐹:◡(𝐴 × 𝐵)–1-1-onto→𝐶 ↔ tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶) |
| 7 | 3, 6 | sylib 218 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 × cxp 5681 ◡ccnv 5682 Rel wrel 5688 –1-1-onto→wf1o 6558 tpos ctpos 8246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-1st 8010 df-2nd 8011 df-tpos 8247 |
| This theorem is referenced by: tposidf1o 48760 |
| Copyright terms: Public domain | W3C validator |