| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposresxp | Structured version Visualization version GIF version | ||
| Description: The transposition restricted to a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposresxp | ⊢ (tpos 𝐹 ↾ (𝐴 × 𝐵)) = tpos (𝐹 ↾ (𝐵 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5632 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | tposres 48992 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → (tpos 𝐹 ↾ (𝐴 × 𝐵)) = tpos (𝐹 ↾ ◡(𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (tpos 𝐹 ↾ (𝐴 × 𝐵)) = tpos (𝐹 ↾ ◡(𝐴 × 𝐵)) |
| 4 | cnvxp 6104 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 5 | 4 | reseq2i 5924 | . . 3 ⊢ (𝐹 ↾ ◡(𝐴 × 𝐵)) = (𝐹 ↾ (𝐵 × 𝐴)) |
| 6 | 5 | tposeqi 8189 | . 2 ⊢ tpos (𝐹 ↾ ◡(𝐴 × 𝐵)) = tpos (𝐹 ↾ (𝐵 × 𝐴)) |
| 7 | 3, 6 | eqtri 2754 | 1 ⊢ (tpos 𝐹 ↾ (𝐴 × 𝐵)) = tpos (𝐹 ↾ (𝐵 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 × cxp 5612 ◡ccnv 5613 ↾ cres 5616 Rel wrel 5619 tpos ctpos 8155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-2nd 7922 df-tpos 8156 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |