Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposideq Structured version   Visualization version   GIF version

Theorem tposideq 49049
Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposideq (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Distinct variable group:   𝑥,𝑅

Proof of Theorem tposideq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tposres 49043 . 2 (Rel 𝑅 → (tpos I ↾ 𝑅) = tpos ( I ↾ 𝑅))
2 relcnv 6060 . . . . 5 Rel 𝑅
3 fnresi 6618 . . . . 5 ( I ↾ 𝑅) Fn 𝑅
4 tposfn2 8187 . . . . 5 (Rel 𝑅 → (( I ↾ 𝑅) Fn 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅))
52, 3, 4mp2 9 . . . 4 tpos ( I ↾ 𝑅) Fn 𝑅
6 dfrel2 6144 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
76biimpi 216 . . . . 5 (Rel 𝑅𝑅 = 𝑅)
87fneq2d 6583 . . . 4 (Rel 𝑅 → (tpos ( I ↾ 𝑅) Fn 𝑅 ↔ tpos ( I ↾ 𝑅) Fn 𝑅))
95, 8mpbii 233 . . 3 (Rel 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅)
10 vsnex 5376 . . . . . . 7 {𝑥} ∈ V
1110cnvex 7864 . . . . . 6 {𝑥} ∈ V
1211uniex 7683 . . . . 5 {𝑥} ∈ V
13 eqid 2733 . . . . 5 (𝑥𝑅 {𝑥}) = (𝑥𝑅 {𝑥})
1412, 13fnmpti 6632 . . . 4 (𝑥𝑅 {𝑥}) Fn 𝑅
1514a1i 11 . . 3 (Rel 𝑅 → (𝑥𝑅 {𝑥}) Fn 𝑅)
16 1st2nd 7980 . . . . 5 ((Rel 𝑅𝑦𝑅) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
17 1st2ndb 7970 . . . . . 6 (𝑦 ∈ (V × V) ↔ 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
1817biimpri 228 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝑦 ∈ (V × V))
19 2nd1st 7979 . . . . 5 (𝑦 ∈ (V × V) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
2016, 18, 193syl 18 . . . 4 ((Rel 𝑅𝑦𝑅) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
21 sneq 4587 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2221cnveqd 5821 . . . . . . 7 (𝑥 = 𝑦{𝑥} = {𝑦})
2322unieqd 4873 . . . . . 6 (𝑥 = 𝑦 {𝑥} = {𝑦})
2423, 13, 12fvmpt3i 6943 . . . . 5 (𝑦𝑅 → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2524adantl 481 . . . 4 ((Rel 𝑅𝑦𝑅) → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2616fveq2d 6835 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩))
27 ovtpos 8180 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = ((2nd𝑦)( I ↾ 𝑅)(1st𝑦))
28 df-ov 7358 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩)
29 df-ov 7358 . . . . . . 7 ((2nd𝑦)( I ↾ 𝑅)(1st𝑦)) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3027, 28, 293eqtr3i 2764 . . . . . 6 (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3130a1i 11 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩))
32 simpr 484 . . . . . . 7 ((Rel 𝑅𝑦𝑅) → 𝑦𝑅)
3316, 32eqeltrrd 2834 . . . . . 6 ((Rel 𝑅𝑦𝑅) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
34 fvex 6844 . . . . . . . 8 (2nd𝑦) ∈ V
35 fvex 6844 . . . . . . . 8 (1st𝑦) ∈ V
3634, 35opelcnv 5827 . . . . . . 7 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
3736biimpri 228 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅 → ⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅)
38 fvresi 7116 . . . . . 6 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3933, 37, 383syl 18 . . . . 5 ((Rel 𝑅𝑦𝑅) → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4026, 31, 393eqtrd 2772 . . . 4 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4120, 25, 403eqtr4rd 2779 . . 3 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ((𝑥𝑅 {𝑥})‘𝑦))
429, 15, 41eqfnfvd 6976 . 2 (Rel 𝑅 → tpos ( I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
431, 42eqtrd 2768 1 (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583   cuni 4860  cmpt 5176   I cid 5515   × cxp 5619  ccnv 5620  cres 5623  Rel wrel 5626   Fn wfn 6484  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  tpos ctpos 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-1st 7930  df-2nd 7931  df-tpos 8165
This theorem is referenced by:  tposideq2  49050
  Copyright terms: Public domain W3C validator