Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposideq Structured version   Visualization version   GIF version

Theorem tposideq 48864
Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposideq (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Distinct variable group:   𝑥,𝑅

Proof of Theorem tposideq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tposres 48858 . 2 (Rel 𝑅 → (tpos I ↾ 𝑅) = tpos ( I ↾ 𝑅))
2 relcnv 6077 . . . . 5 Rel 𝑅
3 fnresi 6649 . . . . 5 ( I ↾ 𝑅) Fn 𝑅
4 tposfn2 8229 . . . . 5 (Rel 𝑅 → (( I ↾ 𝑅) Fn 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅))
52, 3, 4mp2 9 . . . 4 tpos ( I ↾ 𝑅) Fn 𝑅
6 dfrel2 6164 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
76biimpi 216 . . . . 5 (Rel 𝑅𝑅 = 𝑅)
87fneq2d 6614 . . . 4 (Rel 𝑅 → (tpos ( I ↾ 𝑅) Fn 𝑅 ↔ tpos ( I ↾ 𝑅) Fn 𝑅))
95, 8mpbii 233 . . 3 (Rel 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅)
10 vsnex 5391 . . . . . . 7 {𝑥} ∈ V
1110cnvex 7903 . . . . . 6 {𝑥} ∈ V
1211uniex 7719 . . . . 5 {𝑥} ∈ V
13 eqid 2730 . . . . 5 (𝑥𝑅 {𝑥}) = (𝑥𝑅 {𝑥})
1412, 13fnmpti 6663 . . . 4 (𝑥𝑅 {𝑥}) Fn 𝑅
1514a1i 11 . . 3 (Rel 𝑅 → (𝑥𝑅 {𝑥}) Fn 𝑅)
16 1st2nd 8020 . . . . 5 ((Rel 𝑅𝑦𝑅) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
17 1st2ndb 8010 . . . . . 6 (𝑦 ∈ (V × V) ↔ 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
1817biimpri 228 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝑦 ∈ (V × V))
19 2nd1st 8019 . . . . 5 (𝑦 ∈ (V × V) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
2016, 18, 193syl 18 . . . 4 ((Rel 𝑅𝑦𝑅) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
21 sneq 4601 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2221cnveqd 5841 . . . . . . 7 (𝑥 = 𝑦{𝑥} = {𝑦})
2322unieqd 4886 . . . . . 6 (𝑥 = 𝑦 {𝑥} = {𝑦})
2423, 13, 12fvmpt3i 6975 . . . . 5 (𝑦𝑅 → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2524adantl 481 . . . 4 ((Rel 𝑅𝑦𝑅) → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2616fveq2d 6864 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩))
27 ovtpos 8222 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = ((2nd𝑦)( I ↾ 𝑅)(1st𝑦))
28 df-ov 7392 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩)
29 df-ov 7392 . . . . . . 7 ((2nd𝑦)( I ↾ 𝑅)(1st𝑦)) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3027, 28, 293eqtr3i 2761 . . . . . 6 (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3130a1i 11 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩))
32 simpr 484 . . . . . . 7 ((Rel 𝑅𝑦𝑅) → 𝑦𝑅)
3316, 32eqeltrrd 2830 . . . . . 6 ((Rel 𝑅𝑦𝑅) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
34 fvex 6873 . . . . . . . 8 (2nd𝑦) ∈ V
35 fvex 6873 . . . . . . . 8 (1st𝑦) ∈ V
3634, 35opelcnv 5847 . . . . . . 7 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
3736biimpri 228 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅 → ⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅)
38 fvresi 7149 . . . . . 6 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3933, 37, 383syl 18 . . . . 5 ((Rel 𝑅𝑦𝑅) → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4026, 31, 393eqtrd 2769 . . . 4 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4120, 25, 403eqtr4rd 2776 . . 3 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ((𝑥𝑅 {𝑥})‘𝑦))
429, 15, 41eqfnfvd 7008 . 2 (Rel 𝑅 → tpos ( I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
431, 42eqtrd 2765 1 (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4591  cop 4597   cuni 4873  cmpt 5190   I cid 5534   × cxp 5638  ccnv 5639  cres 5642  Rel wrel 5645   Fn wfn 6508  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-1st 7970  df-2nd 7971  df-tpos 8207
This theorem is referenced by:  tposideq2  48865
  Copyright terms: Public domain W3C validator