| Step | Hyp | Ref
| Expression |
| 1 | | tposres 48755 |
. 2
⊢ (Rel
𝑅 → (tpos I ↾
𝑅) = tpos ( I ↾ ◡𝑅)) |
| 2 | | relcnv 6120 |
. . . . 5
⊢ Rel ◡𝑅 |
| 3 | | fnresi 6695 |
. . . . 5
⊢ ( I
↾ ◡𝑅) Fn ◡𝑅 |
| 4 | | tposfn2 8269 |
. . . . 5
⊢ (Rel
◡𝑅 → (( I ↾ ◡𝑅) Fn ◡𝑅 → tpos ( I ↾ ◡𝑅) Fn ◡◡𝑅)) |
| 5 | 2, 3, 4 | mp2 9 |
. . . 4
⊢ tpos ( I
↾ ◡𝑅) Fn ◡◡𝑅 |
| 6 | | dfrel2 6207 |
. . . . . 6
⊢ (Rel
𝑅 ↔ ◡◡𝑅 = 𝑅) |
| 7 | 6 | biimpi 216 |
. . . . 5
⊢ (Rel
𝑅 → ◡◡𝑅 = 𝑅) |
| 8 | 7 | fneq2d 6660 |
. . . 4
⊢ (Rel
𝑅 → (tpos ( I ↾
◡𝑅) Fn ◡◡𝑅 ↔ tpos ( I ↾ ◡𝑅) Fn 𝑅)) |
| 9 | 5, 8 | mpbii 233 |
. . 3
⊢ (Rel
𝑅 → tpos ( I ↾
◡𝑅) Fn 𝑅) |
| 10 | | vsnex 5432 |
. . . . . . 7
⊢ {𝑥} ∈ V |
| 11 | 10 | cnvex 7943 |
. . . . . 6
⊢ ◡{𝑥} ∈ V |
| 12 | 11 | uniex 7757 |
. . . . 5
⊢ ∪ ◡{𝑥} ∈ V |
| 13 | | eqid 2736 |
. . . . 5
⊢ (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) |
| 14 | 12, 13 | fnmpti 6709 |
. . . 4
⊢ (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) Fn 𝑅 |
| 15 | 14 | a1i 11 |
. . 3
⊢ (Rel
𝑅 → (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) Fn 𝑅) |
| 16 | | 1st2nd 8060 |
. . . . 5
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 17 | | 1st2ndb 8050 |
. . . . . 6
⊢ (𝑦 ∈ (V × V) ↔
𝑦 = 〈(1st
‘𝑦), (2nd
‘𝑦)〉) |
| 18 | 17 | biimpri 228 |
. . . . 5
⊢ (𝑦 = 〈(1st
‘𝑦), (2nd
‘𝑦)〉 →
𝑦 ∈ (V ×
V)) |
| 19 | | 2nd1st 8059 |
. . . . 5
⊢ (𝑦 ∈ (V × V) →
∪ ◡{𝑦} = 〈(2nd
‘𝑦), (1st
‘𝑦)〉) |
| 20 | 16, 18, 19 | 3syl 18 |
. . . 4
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → ∪ ◡{𝑦} = 〈(2nd ‘𝑦), (1st ‘𝑦)〉) |
| 21 | | sneq 4634 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 22 | 21 | cnveqd 5884 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ◡{𝑥} = ◡{𝑦}) |
| 23 | 22 | unieqd 4918 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ∪ ◡{𝑥} = ∪ ◡{𝑦}) |
| 24 | 23, 13, 12 | fvmpt3i 7019 |
. . . . 5
⊢ (𝑦 ∈ 𝑅 → ((𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})‘𝑦) = ∪ ◡{𝑦}) |
| 25 | 24 | adantl 481 |
. . . 4
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → ((𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})‘𝑦) = ∪ ◡{𝑦}) |
| 26 | 16 | fveq2d 6908 |
. . . . 5
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → (tpos ( I ↾ ◡𝑅)‘𝑦) = (tpos ( I ↾ ◡𝑅)‘〈(1st ‘𝑦), (2nd ‘𝑦)〉)) |
| 27 | | ovtpos 8262 |
. . . . . . 7
⊢
((1st ‘𝑦)tpos ( I ↾ ◡𝑅)(2nd ‘𝑦)) = ((2nd ‘𝑦)( I ↾ ◡𝑅)(1st ‘𝑦)) |
| 28 | | df-ov 7432 |
. . . . . . 7
⊢
((1st ‘𝑦)tpos ( I ↾ ◡𝑅)(2nd ‘𝑦)) = (tpos ( I ↾ ◡𝑅)‘〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 29 | | df-ov 7432 |
. . . . . . 7
⊢
((2nd ‘𝑦)( I ↾ ◡𝑅)(1st ‘𝑦)) = (( I ↾ ◡𝑅)‘〈(2nd ‘𝑦), (1st ‘𝑦)〉) |
| 30 | 27, 28, 29 | 3eqtr3i 2772 |
. . . . . 6
⊢ (tpos ( I
↾ ◡𝑅)‘〈(1st ‘𝑦), (2nd ‘𝑦)〉) = (( I ↾ ◡𝑅)‘〈(2nd ‘𝑦), (1st ‘𝑦)〉) |
| 31 | 30 | a1i 11 |
. . . . 5
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → (tpos ( I ↾ ◡𝑅)‘〈(1st ‘𝑦), (2nd ‘𝑦)〉) = (( I ↾ ◡𝑅)‘〈(2nd ‘𝑦), (1st ‘𝑦)〉)) |
| 32 | | simpr 484 |
. . . . . . 7
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → 𝑦 ∈ 𝑅) |
| 33 | 16, 32 | eqeltrrd 2841 |
. . . . . 6
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ 𝑅) |
| 34 | | fvex 6917 |
. . . . . . . 8
⊢
(2nd ‘𝑦) ∈ V |
| 35 | | fvex 6917 |
. . . . . . . 8
⊢
(1st ‘𝑦) ∈ V |
| 36 | 34, 35 | opelcnv 5890 |
. . . . . . 7
⊢
(〈(2nd ‘𝑦), (1st ‘𝑦)〉 ∈ ◡𝑅 ↔ 〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ 𝑅) |
| 37 | 36 | biimpri 228 |
. . . . . 6
⊢
(〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∈ 𝑅 → 〈(2nd ‘𝑦), (1st ‘𝑦)〉 ∈ ◡𝑅) |
| 38 | | fvresi 7191 |
. . . . . 6
⊢
(〈(2nd ‘𝑦), (1st ‘𝑦)〉 ∈ ◡𝑅 → (( I ↾ ◡𝑅)‘〈(2nd ‘𝑦), (1st ‘𝑦)〉) = 〈(2nd
‘𝑦), (1st
‘𝑦)〉) |
| 39 | 33, 37, 38 | 3syl 18 |
. . . . 5
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → (( I ↾ ◡𝑅)‘〈(2nd ‘𝑦), (1st ‘𝑦)〉) = 〈(2nd
‘𝑦), (1st
‘𝑦)〉) |
| 40 | 26, 31, 39 | 3eqtrd 2780 |
. . . 4
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → (tpos ( I ↾ ◡𝑅)‘𝑦) = 〈(2nd ‘𝑦), (1st ‘𝑦)〉) |
| 41 | 20, 25, 40 | 3eqtr4rd 2787 |
. . 3
⊢ ((Rel
𝑅 ∧ 𝑦 ∈ 𝑅) → (tpos ( I ↾ ◡𝑅)‘𝑦) = ((𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})‘𝑦)) |
| 42 | 9, 15, 41 | eqfnfvd 7052 |
. 2
⊢ (Rel
𝑅 → tpos ( I ↾
◡𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})) |
| 43 | 1, 42 | eqtrd 2776 |
1
⊢ (Rel
𝑅 → (tpos I ↾
𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})) |