Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposideq Structured version   Visualization version   GIF version

Theorem tposideq 48771
Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposideq (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Distinct variable group:   𝑥,𝑅

Proof of Theorem tposideq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tposres 48765 . 2 (Rel 𝑅 → (tpos I ↾ 𝑅) = tpos ( I ↾ 𝑅))
2 relcnv 6102 . . . . 5 Rel 𝑅
3 fnresi 6677 . . . . 5 ( I ↾ 𝑅) Fn 𝑅
4 tposfn2 8255 . . . . 5 (Rel 𝑅 → (( I ↾ 𝑅) Fn 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅))
52, 3, 4mp2 9 . . . 4 tpos ( I ↾ 𝑅) Fn 𝑅
6 dfrel2 6189 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
76biimpi 216 . . . . 5 (Rel 𝑅𝑅 = 𝑅)
87fneq2d 6642 . . . 4 (Rel 𝑅 → (tpos ( I ↾ 𝑅) Fn 𝑅 ↔ tpos ( I ↾ 𝑅) Fn 𝑅))
95, 8mpbii 233 . . 3 (Rel 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅)
10 vsnex 5414 . . . . . . 7 {𝑥} ∈ V
1110cnvex 7929 . . . . . 6 {𝑥} ∈ V
1211uniex 7743 . . . . 5 {𝑥} ∈ V
13 eqid 2734 . . . . 5 (𝑥𝑅 {𝑥}) = (𝑥𝑅 {𝑥})
1412, 13fnmpti 6691 . . . 4 (𝑥𝑅 {𝑥}) Fn 𝑅
1514a1i 11 . . 3 (Rel 𝑅 → (𝑥𝑅 {𝑥}) Fn 𝑅)
16 1st2nd 8046 . . . . 5 ((Rel 𝑅𝑦𝑅) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
17 1st2ndb 8036 . . . . . 6 (𝑦 ∈ (V × V) ↔ 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
1817biimpri 228 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝑦 ∈ (V × V))
19 2nd1st 8045 . . . . 5 (𝑦 ∈ (V × V) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
2016, 18, 193syl 18 . . . 4 ((Rel 𝑅𝑦𝑅) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
21 sneq 4616 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2221cnveqd 5866 . . . . . . 7 (𝑥 = 𝑦{𝑥} = {𝑦})
2322unieqd 4900 . . . . . 6 (𝑥 = 𝑦 {𝑥} = {𝑦})
2423, 13, 12fvmpt3i 7001 . . . . 5 (𝑦𝑅 → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2524adantl 481 . . . 4 ((Rel 𝑅𝑦𝑅) → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2616fveq2d 6890 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩))
27 ovtpos 8248 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = ((2nd𝑦)( I ↾ 𝑅)(1st𝑦))
28 df-ov 7416 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩)
29 df-ov 7416 . . . . . . 7 ((2nd𝑦)( I ↾ 𝑅)(1st𝑦)) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3027, 28, 293eqtr3i 2765 . . . . . 6 (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3130a1i 11 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩))
32 simpr 484 . . . . . . 7 ((Rel 𝑅𝑦𝑅) → 𝑦𝑅)
3316, 32eqeltrrd 2834 . . . . . 6 ((Rel 𝑅𝑦𝑅) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
34 fvex 6899 . . . . . . . 8 (2nd𝑦) ∈ V
35 fvex 6899 . . . . . . . 8 (1st𝑦) ∈ V
3634, 35opelcnv 5872 . . . . . . 7 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
3736biimpri 228 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅 → ⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅)
38 fvresi 7175 . . . . . 6 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3933, 37, 383syl 18 . . . . 5 ((Rel 𝑅𝑦𝑅) → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4026, 31, 393eqtrd 2773 . . . 4 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4120, 25, 403eqtr4rd 2780 . . 3 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ((𝑥𝑅 {𝑥})‘𝑦))
429, 15, 41eqfnfvd 7034 . 2 (Rel 𝑅 → tpos ( I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
431, 42eqtrd 2769 1 (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cop 4612   cuni 4887  cmpt 5205   I cid 5557   × cxp 5663  ccnv 5664  cres 5667  Rel wrel 5670   Fn wfn 6536  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  tpos ctpos 8232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-1st 7996  df-2nd 7997  df-tpos 8233
This theorem is referenced by:  tposideq2  48772
  Copyright terms: Public domain W3C validator