Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposideq Structured version   Visualization version   GIF version

Theorem tposideq 48849
Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposideq (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Distinct variable group:   𝑥,𝑅

Proof of Theorem tposideq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tposres 48843 . 2 (Rel 𝑅 → (tpos I ↾ 𝑅) = tpos ( I ↾ 𝑅))
2 relcnv 6064 . . . . 5 Rel 𝑅
3 fnresi 6629 . . . . 5 ( I ↾ 𝑅) Fn 𝑅
4 tposfn2 8204 . . . . 5 (Rel 𝑅 → (( I ↾ 𝑅) Fn 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅))
52, 3, 4mp2 9 . . . 4 tpos ( I ↾ 𝑅) Fn 𝑅
6 dfrel2 6150 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
76biimpi 216 . . . . 5 (Rel 𝑅𝑅 = 𝑅)
87fneq2d 6594 . . . 4 (Rel 𝑅 → (tpos ( I ↾ 𝑅) Fn 𝑅 ↔ tpos ( I ↾ 𝑅) Fn 𝑅))
95, 8mpbii 233 . . 3 (Rel 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅)
10 vsnex 5384 . . . . . . 7 {𝑥} ∈ V
1110cnvex 7881 . . . . . 6 {𝑥} ∈ V
1211uniex 7697 . . . . 5 {𝑥} ∈ V
13 eqid 2729 . . . . 5 (𝑥𝑅 {𝑥}) = (𝑥𝑅 {𝑥})
1412, 13fnmpti 6643 . . . 4 (𝑥𝑅 {𝑥}) Fn 𝑅
1514a1i 11 . . 3 (Rel 𝑅 → (𝑥𝑅 {𝑥}) Fn 𝑅)
16 1st2nd 7997 . . . . 5 ((Rel 𝑅𝑦𝑅) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
17 1st2ndb 7987 . . . . . 6 (𝑦 ∈ (V × V) ↔ 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
1817biimpri 228 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝑦 ∈ (V × V))
19 2nd1st 7996 . . . . 5 (𝑦 ∈ (V × V) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
2016, 18, 193syl 18 . . . 4 ((Rel 𝑅𝑦𝑅) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
21 sneq 4595 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2221cnveqd 5829 . . . . . . 7 (𝑥 = 𝑦{𝑥} = {𝑦})
2322unieqd 4880 . . . . . 6 (𝑥 = 𝑦 {𝑥} = {𝑦})
2423, 13, 12fvmpt3i 6955 . . . . 5 (𝑦𝑅 → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2524adantl 481 . . . 4 ((Rel 𝑅𝑦𝑅) → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2616fveq2d 6844 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩))
27 ovtpos 8197 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = ((2nd𝑦)( I ↾ 𝑅)(1st𝑦))
28 df-ov 7372 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩)
29 df-ov 7372 . . . . . . 7 ((2nd𝑦)( I ↾ 𝑅)(1st𝑦)) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3027, 28, 293eqtr3i 2760 . . . . . 6 (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3130a1i 11 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩))
32 simpr 484 . . . . . . 7 ((Rel 𝑅𝑦𝑅) → 𝑦𝑅)
3316, 32eqeltrrd 2829 . . . . . 6 ((Rel 𝑅𝑦𝑅) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
34 fvex 6853 . . . . . . . 8 (2nd𝑦) ∈ V
35 fvex 6853 . . . . . . . 8 (1st𝑦) ∈ V
3634, 35opelcnv 5835 . . . . . . 7 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
3736biimpri 228 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅 → ⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅)
38 fvresi 7129 . . . . . 6 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3933, 37, 383syl 18 . . . . 5 ((Rel 𝑅𝑦𝑅) → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4026, 31, 393eqtrd 2768 . . . 4 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4120, 25, 403eqtr4rd 2775 . . 3 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ((𝑥𝑅 {𝑥})‘𝑦))
429, 15, 41eqfnfvd 6988 . 2 (Rel 𝑅 → tpos ( I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
431, 42eqtrd 2764 1 (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cop 4591   cuni 4867  cmpt 5183   I cid 5525   × cxp 5629  ccnv 5630  cres 5633  Rel wrel 5636   Fn wfn 6494  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-1st 7947  df-2nd 7948  df-tpos 8182
This theorem is referenced by:  tposideq2  48850
  Copyright terms: Public domain W3C validator