Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposideq Structured version   Visualization version   GIF version

Theorem tposideq 48919
Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
tposideq (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Distinct variable group:   𝑥,𝑅

Proof of Theorem tposideq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tposres 48913 . 2 (Rel 𝑅 → (tpos I ↾ 𝑅) = tpos ( I ↾ 𝑅))
2 relcnv 6048 . . . . 5 Rel 𝑅
3 fnresi 6605 . . . . 5 ( I ↾ 𝑅) Fn 𝑅
4 tposfn2 8173 . . . . 5 (Rel 𝑅 → (( I ↾ 𝑅) Fn 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅))
52, 3, 4mp2 9 . . . 4 tpos ( I ↾ 𝑅) Fn 𝑅
6 dfrel2 6131 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
76biimpi 216 . . . . 5 (Rel 𝑅𝑅 = 𝑅)
87fneq2d 6570 . . . 4 (Rel 𝑅 → (tpos ( I ↾ 𝑅) Fn 𝑅 ↔ tpos ( I ↾ 𝑅) Fn 𝑅))
95, 8mpbii 233 . . 3 (Rel 𝑅 → tpos ( I ↾ 𝑅) Fn 𝑅)
10 vsnex 5367 . . . . . . 7 {𝑥} ∈ V
1110cnvex 7850 . . . . . 6 {𝑥} ∈ V
1211uniex 7669 . . . . 5 {𝑥} ∈ V
13 eqid 2731 . . . . 5 (𝑥𝑅 {𝑥}) = (𝑥𝑅 {𝑥})
1412, 13fnmpti 6619 . . . 4 (𝑥𝑅 {𝑥}) Fn 𝑅
1514a1i 11 . . 3 (Rel 𝑅 → (𝑥𝑅 {𝑥}) Fn 𝑅)
16 1st2nd 7966 . . . . 5 ((Rel 𝑅𝑦𝑅) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
17 1st2ndb 7956 . . . . . 6 (𝑦 ∈ (V × V) ↔ 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
1817biimpri 228 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝑦 ∈ (V × V))
19 2nd1st 7965 . . . . 5 (𝑦 ∈ (V × V) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
2016, 18, 193syl 18 . . . 4 ((Rel 𝑅𝑦𝑅) → {𝑦} = ⟨(2nd𝑦), (1st𝑦)⟩)
21 sneq 4581 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2221cnveqd 5810 . . . . . . 7 (𝑥 = 𝑦{𝑥} = {𝑦})
2322unieqd 4867 . . . . . 6 (𝑥 = 𝑦 {𝑥} = {𝑦})
2423, 13, 12fvmpt3i 6929 . . . . 5 (𝑦𝑅 → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2524adantl 481 . . . 4 ((Rel 𝑅𝑦𝑅) → ((𝑥𝑅 {𝑥})‘𝑦) = {𝑦})
2616fveq2d 6821 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩))
27 ovtpos 8166 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = ((2nd𝑦)( I ↾ 𝑅)(1st𝑦))
28 df-ov 7344 . . . . . . 7 ((1st𝑦)tpos ( I ↾ 𝑅)(2nd𝑦)) = (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩)
29 df-ov 7344 . . . . . . 7 ((2nd𝑦)( I ↾ 𝑅)(1st𝑦)) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3027, 28, 293eqtr3i 2762 . . . . . 6 (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩)
3130a1i 11 . . . . 5 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘⟨(1st𝑦), (2nd𝑦)⟩) = (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩))
32 simpr 484 . . . . . . 7 ((Rel 𝑅𝑦𝑅) → 𝑦𝑅)
3316, 32eqeltrrd 2832 . . . . . 6 ((Rel 𝑅𝑦𝑅) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
34 fvex 6830 . . . . . . . 8 (2nd𝑦) ∈ V
35 fvex 6830 . . . . . . . 8 (1st𝑦) ∈ V
3634, 35opelcnv 5816 . . . . . . 7 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅)
3736biimpri 228 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑅 → ⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅)
38 fvresi 7102 . . . . . 6 (⟨(2nd𝑦), (1st𝑦)⟩ ∈ 𝑅 → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3933, 37, 383syl 18 . . . . 5 ((Rel 𝑅𝑦𝑅) → (( I ↾ 𝑅)‘⟨(2nd𝑦), (1st𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
4026, 31, 393eqtrd 2770 . . . 4 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
4120, 25, 403eqtr4rd 2777 . . 3 ((Rel 𝑅𝑦𝑅) → (tpos ( I ↾ 𝑅)‘𝑦) = ((𝑥𝑅 {𝑥})‘𝑦))
429, 15, 41eqfnfvd 6962 . 2 (Rel 𝑅 → tpos ( I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
431, 42eqtrd 2766 1 (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥𝑅 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  cop 4577   cuni 4854  cmpt 5167   I cid 5505   × cxp 5609  ccnv 5610  cres 5613  Rel wrel 5616   Fn wfn 6471  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  tpos ctpos 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-1st 7916  df-2nd 7917  df-tpos 8151
This theorem is referenced by:  tposideq2  48920
  Copyright terms: Public domain W3C validator