![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres | Structured version Visualization version GIF version |
Description: The transposition restricted to a relation. (Contributed by Zhi Wang, 6-Oct-2025.) |
Ref | Expression |
---|---|
tposres | ⊢ (Rel 𝑅 → (tpos 𝐹 ↾ 𝑅) = tpos (𝐹 ↾ ◡𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelrel0 5743 | . . 3 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
2 | nel2nelin 4207 | . . 3 ⊢ (¬ ∅ ∈ 𝑅 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) |
4 | 3 | tposres3 48754 | 1 ⊢ (Rel 𝑅 → (tpos 𝐹 ↾ 𝑅) = tpos (𝐹 ↾ ◡𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∩ cin 3949 ∅c0 4332 ◡ccnv 5682 dom cdm 5683 ↾ cres 5685 Rel wrel 5688 tpos ctpos 8246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-1st 8010 df-2nd 8011 df-tpos 8247 |
This theorem is referenced by: tposresxp 48756 tposideq 48761 |
Copyright terms: Public domain | W3C validator |