| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposres | Structured version Visualization version GIF version | ||
| Description: The transposition restricted to a relation. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposres | ⊢ (Rel 𝑅 → (tpos 𝐹 ↾ 𝑅) = tpos (𝐹 ↾ ◡𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelrel0 5671 | . . 3 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
| 2 | nel2nelin 4153 | . . 3 ⊢ (¬ ∅ ∈ 𝑅 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) |
| 4 | 3 | tposres3 48912 | 1 ⊢ (Rel 𝑅 → (tpos 𝐹 ↾ 𝑅) = tpos (𝐹 ↾ ◡𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ∅c0 4278 ◡ccnv 5610 dom cdm 5611 ↾ cres 5613 Rel wrel 5616 tpos ctpos 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-1st 7916 df-2nd 7917 df-tpos 8151 |
| This theorem is referenced by: tposresxp 48914 tposideq 48919 |
| Copyright terms: Public domain | W3C validator |