| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreclatdemoBAD | Structured version Visualization version GIF version | ||
| Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 18522. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7344 update): This proof uses the old df-clat 18458 and references the required instance of mreclatBAD 18522 as a hypothesis. When mreclatBAD 18522 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below. |
| Ref | Expression |
|---|---|
| mreclatBAD. | ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
| Ref | Expression |
|---|---|
| mreclatdemoBAD | ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . . . . 5 ⊢ (TopOpen‘𝑊) ∈ V | |
| 2 | 1 | uniex 7717 | . . . 4 ⊢ ∪ (TopOpen‘𝑊) ∈ V |
| 3 | mremre 17565 | . . . 4 ⊢ (∪ (TopOpen‘𝑊) ∈ V → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) | |
| 4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) |
| 5 | elinel2 4165 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 8 | 6, 7 | lssmre 20872 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
| 10 | elinel1 4164 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp) | |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
| 12 | 6, 11 | tpsuni 22823 | . . . . . 6 ⊢ (𝑊 ∈ TopSp → (Base‘𝑊) = ∪ (TopOpen‘𝑊)) |
| 13 | 12 | fveq2d 6862 | . . . . 5 ⊢ (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
| 14 | 10, 13 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
| 15 | 9, 14 | eleqtrd 2830 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 16 | 11 | tpstop 22824 | . . . 4 ⊢ (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top) |
| 17 | eqid 2729 | . . . . 5 ⊢ ∪ (TopOpen‘𝑊) = ∪ (TopOpen‘𝑊) | |
| 18 | 17 | cldmre 22965 | . . . 4 ⊢ ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 19 | 10, 16, 18 | 3syl 18 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 20 | mreincl 17560 | . . 3 ⊢ (((Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) | |
| 21 | 4, 15, 19, 20 | syl3anc 1373 | . 2 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 22 | mreclatBAD. | . 2 ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) | |
| 23 | 21, 22 | syl 17 | 1 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 𝒫 cpw 4563 ∪ cuni 4871 ‘cfv 6511 Basecbs 17179 TopOpenctopn 17384 Moorecmre 17543 CLatccla 18457 toInccipo 18486 LModclmod 20766 LSubSpclss 20837 Topctop 22780 TopSpctps 22819 Clsdccld 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mre 17547 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 df-lss 20838 df-top 22781 df-topon 22798 df-topsp 22820 df-cld 22906 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |