MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreclatdemoBAD Structured version   Visualization version   GIF version

Theorem mreclatdemoBAD 21796
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 17863. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7108 update): This proof uses the old df-clat 17784 and references the required instance of mreclatBAD 17863 as a hypothesis. When mreclatBAD 17863 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below.
Hypothesis
Ref Expression
mreclatBAD. (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Assertion
Ref Expression
mreclatdemoBAD (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)

Proof of Theorem mreclatdemoBAD
StepHypRef Expression
1 fvex 6671 . . . . 5 (TopOpen‘𝑊) ∈ V
21uniex 7465 . . . 4 (TopOpen‘𝑊) ∈ V
3 mremre 16933 . . . 4 ( (TopOpen‘𝑊) ∈ V → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
42, 3mp1i 13 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
5 elinel2 4101 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod)
6 eqid 2758 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2758 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
86, 7lssmre 19806 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
95, 8syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
10 elinel1 4100 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp)
11 eqid 2758 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
126, 11tpsuni 21636 . . . . . 6 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
1312fveq2d 6662 . . . . 5 (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
1410, 13syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
159, 14eleqtrd 2854 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)))
1611tpstop 21637 . . . 4 (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top)
17 eqid 2758 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
1817cldmre 21778 . . . 4 ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
1910, 16, 183syl 18 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
20 mreincl 16928 . . 3 (((Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
214, 15, 19, 20syl3anc 1368 . 2 (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
22 mreclatBAD. . 2 (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
2321, 22syl 17 1 (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3409  cin 3857  𝒫 cpw 4494   cuni 4798  cfv 6335  Basecbs 16541  TopOpenctopn 16753  Moorecmre 16911  CLatccla 17783  toInccipo 17827  LModclmod 19702  LSubSpclss 19771  Topctop 21593  TopSpctps 21632  Clsdccld 21716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-plusg 16636  df-0g 16773  df-mre 16915  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mgp 19308  df-ur 19320  df-ring 19367  df-lmod 19704  df-lss 19772  df-top 21594  df-topon 21611  df-topsp 21633  df-cld 21719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator