MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreclatdemoBAD Structured version   Visualization version   GIF version

Theorem mreclatdemoBAD 23125
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 18633. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7404 update): This proof uses the old df-clat 18569 and references the required instance of mreclatBAD 18633 as a hypothesis. When mreclatBAD 18633 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below.
Hypothesis
Ref Expression
mreclatBAD. (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Assertion
Ref Expression
mreclatdemoBAD (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)

Proof of Theorem mreclatdemoBAD
StepHypRef Expression
1 fvex 6933 . . . . 5 (TopOpen‘𝑊) ∈ V
21uniex 7776 . . . 4 (TopOpen‘𝑊) ∈ V
3 mremre 17662 . . . 4 ( (TopOpen‘𝑊) ∈ V → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
42, 3mp1i 13 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
5 elinel2 4225 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod)
6 eqid 2740 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2740 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
86, 7lssmre 20987 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
95, 8syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
10 elinel1 4224 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp)
11 eqid 2740 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
126, 11tpsuni 22963 . . . . . 6 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
1312fveq2d 6924 . . . . 5 (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
1410, 13syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
159, 14eleqtrd 2846 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)))
1611tpstop 22964 . . . 4 (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top)
17 eqid 2740 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
1817cldmre 23107 . . . 4 ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
1910, 16, 183syl 18 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
20 mreincl 17657 . . 3 (((Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
214, 15, 19, 20syl3anc 1371 . 2 (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
22 mreclatBAD. . 2 (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
2321, 22syl 17 1 (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  𝒫 cpw 4622   cuni 4931  cfv 6573  Basecbs 17258  TopOpenctopn 17481  Moorecmre 17640  CLatccla 18568  toInccipo 18597  LModclmod 20880  LSubSpclss 20952  Topctop 22920  TopSpctps 22959  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mre 17644  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-top 22921  df-topon 22938  df-topsp 22960  df-cld 23048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator