| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreclatdemoBAD | Structured version Visualization version GIF version | ||
| Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 18469. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7303 update): This proof uses the old df-clat 18405 and references the required instance of mreclatBAD 18469 as a hypothesis. When mreclatBAD 18469 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below. |
| Ref | Expression |
|---|---|
| mreclatBAD. | ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
| Ref | Expression |
|---|---|
| mreclatdemoBAD | ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . 5 ⊢ (TopOpen‘𝑊) ∈ V | |
| 2 | 1 | uniex 7674 | . . . 4 ⊢ ∪ (TopOpen‘𝑊) ∈ V |
| 3 | mremre 17506 | . . . 4 ⊢ (∪ (TopOpen‘𝑊) ∈ V → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) | |
| 4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) |
| 5 | elinel2 4149 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 8 | 6, 7 | lssmre 20899 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
| 10 | elinel1 4148 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp) | |
| 11 | eqid 2731 | . . . . . . 7 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
| 12 | 6, 11 | tpsuni 22851 | . . . . . 6 ⊢ (𝑊 ∈ TopSp → (Base‘𝑊) = ∪ (TopOpen‘𝑊)) |
| 13 | 12 | fveq2d 6826 | . . . . 5 ⊢ (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
| 14 | 10, 13 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
| 15 | 9, 14 | eleqtrd 2833 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 16 | 11 | tpstop 22852 | . . . 4 ⊢ (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top) |
| 17 | eqid 2731 | . . . . 5 ⊢ ∪ (TopOpen‘𝑊) = ∪ (TopOpen‘𝑊) | |
| 18 | 17 | cldmre 22993 | . . . 4 ⊢ ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 19 | 10, 16, 18 | 3syl 18 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 20 | mreincl 17501 | . . 3 ⊢ (((Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) | |
| 21 | 4, 15, 19, 20 | syl3anc 1373 | . 2 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
| 22 | mreclatBAD. | . 2 ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) | |
| 23 | 21, 22 | syl 17 | 1 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 𝒫 cpw 4547 ∪ cuni 4856 ‘cfv 6481 Basecbs 17120 TopOpenctopn 17325 Moorecmre 17484 CLatccla 18404 toInccipo 18433 LModclmod 20793 LSubSpclss 20864 Topctop 22808 TopSpctps 22847 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mre 17488 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mgp 20059 df-ur 20100 df-ring 20153 df-lmod 20795 df-lss 20865 df-top 22809 df-topon 22826 df-topsp 22848 df-cld 22934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |